Skip to main content
Log in

1.3 μm emitting SrF2:Nd3+ nanoparticles for high contrast in vivo imaging in the second biological window

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Novel approaches for high contrast, deep tissue, in vivo fluorescence biomedical imaging are based on infrared-emitting nanoparticles working in the so-called second biological window (1,000–1,400 nm). This allows for the acquisition of high resolution, deep tissue images due to the partial transparency of tissues in this particular spectral range. In addition, the optical excitation with low energy (infrared) photons also leads to a drastic reduction in the contribution of autofluorescence to the in vivo image. Nevertheless, as is demonstrated here, working solely in this biological window does not ensure a complete removal of autofluorescence as the specimen’s diet shows a remarkable infrared fluorescence that extends up to 1,100 nm. In this work, we show how the 1,340 nm emission band of Nd3+ ions embedded in SrF2 nanoparticles can be used to produce autofluorescence free, high contrast in vivo fluorescence images. It is also demonstrated that the complete removal of the food-related infrared autofluorescence is imperative for the development of reliable biodistribution studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Srinivas, P. R.; Barker, P.; Srivastava, S. Nanotechnology in early detection of cancer. Lab. Invest. 2002, 82, 657–662.

    Article  Google Scholar 

  2. Szelenyi, I. Nanomedicine: Evolutionary and revolutionary developments in the treatment of certain inflammatory diseases. Inflamm. Res. 2012, 61, 1–9.

    Article  Google Scholar 

  3. Ferrari, M. Cancer nanotechnology: Opportunities and challenges. Nat. Nanotechnol. 2007, 2, 37–47.

    Google Scholar 

  4. Nie, S. M.; Xing, Y.; Kim, G. J.; Simons, J. W. Nanotechnology applications in cancer. Annu. Rev. Biomed. Eng. 2007, 9, 257–288.

    Article  Google Scholar 

  5. Liu, Y.; Miyoshi, H.; Nakamura, M. Nanomedicine for drug delivery and imaging: A promising avenue for cancer therapy and diagnosis using targeted functional nanoparticles. Int. J. Cancer 2007, 120, 2527–2537.

    Article  Google Scholar 

  6. Davis, S. S. Biomedical applications of nanotechnology -Implications for drug targeting and gene therapy. Trends Biotechnol. 1997, 15, 217–224.

    Article  Google Scholar 

  7. Alivisatos, A. P. Less is more in medicine. Sci. Am. 2001, 285, 66–73.

    Article  Google Scholar 

  8. Bao, G.; Mitragotri, S.; Tong, S. Multifunctional nanoparticles for drug delivery and molecular imaging. Annu. Rev. Biomed. Eng. 2013, 15, 253–282.

    Article  Google Scholar 

  9. Willner, I.; Willner, B. Biomolecule-based nanomaterials and nanostructures. Nano Lett. 2010, 10, 3805–3815.

    Article  Google Scholar 

  10. Brigger, I.; Dubernet, C.; Couvreur, P. Nanoparticles in cancer therapy and diagnosis. Adv. Drug Deliv. Rev 2002, 54, 631–651.

    Article  Google Scholar 

  11. Pankhurst, Q. A.; Thanh, N. T. K.; Jones, S. K.; Dobson, J. Progress in applications of magnetic nanoparticles in biomedicine. J. Phys. D: Appl. Phys. 2009, 42, 224001.

    Article  Google Scholar 

  12. Dreaden, E. C.; Alkilany, A. M.; Huang, X. H.; Murphy, C. J.; El-Sayed, M. A. The golden age: Gold nanoparticles for biomedicine. Chem. Soc. Rev. 2012, 41, 2740–2779.

    Article  Google Scholar 

  13. Rojas-Chapana, J. A.; Giersig, M. Multi-walled carbon nanotubes and metallic nanoparticles and their application in biomedicine. J. Nanosci. Nanotechnol. 2006, 6, 316–321.

    Google Scholar 

  14. Juzenas, P.; Chen, W.; Sun, Y. P.; Coelho, M. A. N.; Generalov, R.; Generalova, N.; Christensen, I. L. Quantum dots and nanoparticles for photodynamic and radiation therapies of cancer. Adv. Drug Deliv. Rev 2008, 60, 1600–1614.

    Article  Google Scholar 

  15. Idris, N. M.; Gnanasammandhan, M. K.; Zhang, J.; Ho, P. C.; Mahendran, R.; Zhang, Y. In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers. Nat. Med. 2012, 18, 1580–1585.

    Article  Google Scholar 

  16. Huff, T. B.; Tong, L.; Zhao, Y.; Hansen, M. N.; Cheng, J. X.; Wei, A. Hyperthermic effects of gold nanorods on tumor cells. Nanomedicine 2007, 2, 125–132.

    Article  Google Scholar 

  17. Jaque, D.; Vetrone, F. Luminescence nanothermometry. Nanoscale 2012, 4, 4301–4326.

    Article  Google Scholar 

  18. Gnach, A.; Bednarkiewicz, A. Lanthanide-doped up-converting nanoparticles: Merits and challenges. Nano Today 2012, 7, 532–563.

    Article  Google Scholar 

  19. Crisp, M. T.; Kotov, N. A. Preparation of nanoparticle coatings on surfaces of complex geometry. Nano Lett. 2003, 3, 173–177.

    Article  Google Scholar 

  20. Sperling, R. A.; Parak, W. J. Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Phil. Trans. R. Soc. A 2010, 368, 1333–1383.

    Article  Google Scholar 

  21. Cañaveras, F.; Madueño, R.; Sevilla, J. M.; Blázquez, M.; Pineda, T. Role of the functionalization of the gold nanoparticle surface on the formation of bioconjugates with human serum albumin. J. Phys. Chem. C 2012, 116, 10430–10437.

    Article  Google Scholar 

  22. Saravanakumar, G.; Kim, K.; Park, J. H.; Rhee, K.; Kwon, I. C. Current status of nanoparticle-based imaging agents for early diagnosis of cancer and atherosclerosis. J. Biomed. Nanotechnol. 2009, 5, 20–35.

    Article  Google Scholar 

  23. Naccache, R.; Rodriguez, E. M.; Bogdan, N.; Sanz-Rodriguez, F.; de la Cruz, M. D. C. I.; de la Fuente, A. J.; Vetrone, F.; Jaque, D.; Sole, J. G.; Capobianco, J. A. High resolution fluorescence imaging of cancers using lanthanide ion-doped upconverting nanocrystals. Cancers 2012, 4, 1067–1105.

    Article  Google Scholar 

  24. Ruedas-Rama, M. J.; Walters, J. D.; Orte, A.; Hall, E. A. H. Fluorescent nanoparticles for intracellular sensing: A review. Anal. Chim. Acta 2012, 751, 1–23.

    Article  Google Scholar 

  25. Jacques, S. L. Optical properties of biological tissues: a review. Phys. Med. Biol. 2013, 58, R37.

    Article  Google Scholar 

  26. Bhaumik, S.; DePuy, J.; Klimash, J. Strategies to minimize background autofluorescence in live mice during noninvasive fluorescence optical imaging. Lab Animal 2007, 36, 40–43.

    Article  Google Scholar 

  27. Taroni, P.; Pifferi, A.; Torricelli, A.; Comelli, D.; Cubeddu, R. In vivo absorption and scattering spectroscopy of biological tissues. Photochem. Photobiol. Sci. 2003, 2, 124–129.

    Article  Google Scholar 

  28. Frangioni, J. V. In vivo near-infrared fluorescence imaging. Curr. Opin. Chem. Biol. 2003, 7, 626–634.

    Article  Google Scholar 

  29. Smith, A. M.; Mancini, M. C.; Nie, S. M. Bioimaging: Second window for in vivo imaging. Nat. Nanotechnol. 2009, 4, 710–711.

    Article  Google Scholar 

  30. Venkatachalam, N.; Yamano, T.; Hemmer, E.; Hyodo, H.; Kishimoto, H.; Soga, K. Er3+-doped Y2O3 nanophosphors for near-infrared fluorescence bioimaging applications. J. Am. Ceram. Soc. 2013, 96, 2759–2765.

    Article  Google Scholar 

  31. Hemmer, E.; Venkatachalam, N.; Hyodo, H.; Hattori, A.; Ebina, Y.; Kishimoto, H.; Soga, K. Upconverting and NIR emitting rare earth based nanostructures for NIR-bioimaging. Nanoscale 2013, 5, 11339–11361.

    Article  Google Scholar 

  32. Nyk, M.; Kumar, R.; Ohulchanskyy, T. Y.; Bergey, E. J.; Prasad, P. N. High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors. Nano Lett. 2008, 8, 3834–3838.

    Article  Google Scholar 

  33. Zhou, J.; Liu, Z.; Li, F. Y. Upconversion nanophosphors for small-animal imaging. Chem. Soc. Rev. 2012, 41, 1323–1349.

    Article  Google Scholar 

  34. Wang, F.; Liu, X. Upconversion multicolor fine-tuning: Visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles. J. Am. Chem. Soc. 2008, 130, 5642–5643.

    Article  Google Scholar 

  35. Yang, Y.; Shao, Q.; Deng, R.; Wang, C.; Teng, X.; Cheng, K.; Cheng, Z.; Huang, L.; Liu, Z.; Liu, X. In vitro and in vivo uncaging and bioluminescence imaging by using photocaged upconversion nanoparticles. Angew. Chem. Int. Ed. 2012, 51, 3125–3129.

    Article  Google Scholar 

  36. Hong, G.; Lee, J. C.; Robinson, J. T.; Raaz, U.; Xie, L.; Huang, N. F.; Cooke, J. P.; Dai, H. Multifunctional in vivo vascular imaging using near-infrared II fluorescence. Nat. Med. 2012, 18, 1841–1846.

    Article  Google Scholar 

  37. Welsher, K.; Liu, Z.; Sherlock, S. P.; Robinson, J. T.; Chen, Z.; Daranciang, D.; Dai, H. A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. Nat. Nanotechnol. 2009, 4, 773–780.

    Article  Google Scholar 

  38. Maldiney, T.; Viana, B.; Bessiere, A.; Gourier, D.; Bessodes, M.; Scherman, D.; Richard, C. In vivo imaging with persistent luminescence silicate-based nanoparticles. Opt. Mater. 2013, 35, 1852–1858.

    Article  Google Scholar 

  39. Basavaraju, N.; Sharma, S.; Bessiere, A.; Viana, B.; Gourier, D.; Priolkar, K. R. Red persistent luminescence in MgGa2O4:Cr3+: A new phosphor for in vivo imaging. J. Phys. D: Appl. Phys. 2013, 46, 375401.

    Article  Google Scholar 

  40. Lecointre, A.; Bessiere, A.; Priolkar, K. R.; Gourier, D.; Wallez, G.; Viana, B. Role of manganese in red long-lasting phosphorescence of manganese-doped diopside for in vivo imaging. Mater. Res. Bull. 2013, 48, 1898–1905.

    Article  Google Scholar 

  41. le Masne de Chermont, Q.; Chanéac, C.; Seguin, J.; Pellé, F.; Maîtrejean, S.; Jolivet, J.-P.; Gourier, D.; Bessodes, M.; Scherman, D. Nanoprobes with near-infrared persistent luminescence for in vivo imaging. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 9266–9271.

    Article  Google Scholar 

  42. Inoue, Y.; Izawa, K.; Kiryu, S.; Tojo, A.; Ohtomo, K. Diet and abdominal autofluorescence detected by in vivo fluorescence imaging of living mice. Mol. Imaging 2008, 7, 21–27.

    Google Scholar 

  43. Troy, T.; Jekic-McMullen, D.; Sambucetti, L.; Rice, B. Quantitative comparison of the sensitivity of detection of fluorescent and bioluminescent reporters in animal models. Mol. Imaging 2004, 3, 9–23.

    Article  Google Scholar 

  44. Krasnovsky, A. A., Jr.; Kovalev, Y. V. Spectral and kinetic parameters of phosphorescence of triplet chlorophyll a in the photosynthetic apparatus of plants. Biochemistry (Moscow) 2014, 79, 349–361.

    Article  Google Scholar 

  45. Lee, M. R. F.; Scott, M. B.; Veberg-Dahl, A.; Evans, P. R.; Theobald, V. J.; Lundby, F.; Scollan, N. D.; Wold, J.-P. Potential of chlorophyll-rich feed ingredients to improve detection of fecal contamination in the abattoir. J. Food Protect. 2013, 76, 516–522.

    Article  Google Scholar 

  46. Welsher, K.; Sherlock, S. P.; Dai, H. Deep-tissue anatomical imaging of mice using carbon nanotube fluorophores in the second near-infrared window. Proc. Natl. Acad. Sci. U.S.A. 2011, 108, 8943–8948.

    Article  Google Scholar 

  47. Hong, G. S.; Robinson, J. T.; Zhang, Y. J.; Diao, S.; Antaris, A. L.; Wang, Q. B.; Dai, H. J. In vivo fluorescence imaging with Ag2S quantum dots in the second near-infrared region. Angew. Chem. Int. Ed. 2012, 51, 9818–9821.

    Article  Google Scholar 

  48. Li, C.; Zhang, Y.; Wang, M.; Zhang, Y.; Chen, G.; Li, L.; Wu, D.; Wang, Q. In vivo real-time visualization of tissue blood flow and angiogenesis using Ag2S quantum dots in the NIR-II window. Biomaterials 2014, 35, 393–400.

    Article  Google Scholar 

  49. Zhang, Y.; Zhang, Y.; Hong, G.; He, W.; Zhou, K.; Yang, K.; Li, F.; Chen, G.; Liu, Z.; Dai, H.; Wang, Q. Biodistribution, pharmacokinetics and toxicology of Ag2S near-infrared quantum dots in mice. Biomaterials 2013, 34, 3639–3646.

    Article  Google Scholar 

  50. Zhang, Y.; Hong, G.; Zhang, Y.; Chen, G.; Li, F.; Dai, H.; Wang, Q. Ag2S quantum dot: A bright and biocompatible fluorescent nanoprobe in the second near-infrared window. ACS Nano 2012, 6, 3695–3702.

    Article  Google Scholar 

  51. Du, Y.; Xu, B.; Fu, T.; Cai, M.; Li, F.; Zhang, Y.; Wang, Q. Near-infrared photoluminescent Ag2S quantum dots from a single source precursor. J. Am. Chem. Soc. 2010, 132, 1470–1471.

    Article  Google Scholar 

  52. Dong, B.; Li, C.; Chen, G.; Zhang, Y.; Zhang, Y.; Deng, M.; Wang, Q. Facile synthesis of highly photoluminescent Ag2Se quantum dots as a new fluorescent probe in the second near-infrared window for in vivo imaging. Chem. Mater. 2013, 25, 2503–2509.

    Article  Google Scholar 

  53. Chen, G.; Ohulchanskyy, T. Y.; Liu, S.; Law, W.-C.; Wu, F.; Swihart, M. T.; Ågren, H.; Prasad, P. N. Core/shell NaGdF4:Nd3+/NaGdF4 nanocrystals with efficient near-infrared to near-infrared downconversion photoluminescence for bioimaging applications. ACS Nano 2012, 6, 2969–2977.

    Article  Google Scholar 

  54. Chen, G.; Ohulchanskyy, T. Y.; Kumar, R.; Ågren, H.; Prasad, P. N. Ultrasmall monodisperse NaYF4:Yb3+/Tm3+ nanocrystals with enhanced near-infrared to near-infrared upconversion photoluminescence. ACS Nano 2010, 4, 3163–3168.

    Article  Google Scholar 

  55. Chen, G.; Shen, J.; Ohulchanskyy, T. Y.; Patel, N. J.; Kutikov, A.; Li, Z.; Song, J.; Pandey, R. K.; Ågren, H.; Prasad, P. N.; Han, G. (α-NaYbF4:Tm3+)/CaF2 core/shell nanoparticles with efficient near-infrared to near-infrared upconversion for high-contrast deep tissue bioimaging. ACS Nano 2012, 6, 8280–8287.

    Article  Google Scholar 

  56. Stouwdan, J. W.; van Veggel, F. C. J. M. Near-infrared emission of redispersible Er3+, Nd3+, and Ho3+ doped LaF3 nanoparticles. Nano Lett. 2002, 2, 733–737.

    Article  Google Scholar 

  57. Rocha, U.; Kumar, K. U.; Jacinto, C.; Villa, I.; Sanz-Rodríguez, F.; del Carmen Iglesias de la Cruz, M.; Juarranz, A.; Carrasco, E.; van Veggel, F. C. J. M.; Bovero, E.; et al. Neodymium-doped LaF3 nanoparticles for fluorescence bioimaging in the second biological window. Small 2013, 10, 1141–1154.

    Article  Google Scholar 

  58. Zhou, J. C.; Yang, Z. L.; Dong, W.; Tang, R. J.; Sun, L. D.; Yan, C. H. Bioimaging and toxicity assessments of near-infrared upconversion luminescent NaYF4:Yb,Tm nanocrystals. Biomaterials 2011, 32, 9059–9067.

    Article  Google Scholar 

  59. Fadeel, B.; Garcia-Bennett, A. E. Better safe than sorry: Understanding the toxicological properties of inorganic nanoparticles manufactured for biomedical applications. Adv. Drug Deliv. Rev. 2010, 62, 362–374.

    Article  Google Scholar 

  60. Gautam, A.; van Veggel, F. Synthesis of nanoparticles, their biocompatibility, and toxicity behavior for biomedical applications. J. Mater. Chem. B 2013, 1, 5186–5200.

    Article  Google Scholar 

  61. Boschi, F.; Lo Meo, S.; Rossi, P. L.; Calandrino, R.; Sbarbati, A.; Spinelli, A. E. Optical imaging of alpha emitters: simulations, phantom, and in vivo results. J. Biomed. Opt. 2011, 16, 126011.

    Article  Google Scholar 

  62. Naczynski, D. J.; Tan, M. C.; Zevon, M.; Wall, B.; Kohl, J.; Kulesa, A.; Chen, S.; Roth, C. M.; Riman, R. E.; Moghe, P. V. Rare-earth-doped biological composites as in vivo shortwave infrared reporters. Nat. Commun. 2013, 4, 2199.

    Article  Google Scholar 

  63. Rocha, U.; Jacinto da Silva, C.; Ferreira Silva, W.; Guedes, I.; Benayas, A.; Martínez Maestro, L.; Acosta Elias, M.; Bovero, E.; van Veggel, F. C. J. M.; García Solé, J. A.; et al. Subtissue thermal sensing based on neodymium-doped LaF3 nanoparticles. ACS Nano 2013, 7, 1188–1199.

    Article  Google Scholar 

  64. Henderson, B.; Imbusch, G. F. Optical Spectroscopy of Inorganic Solids; Oxford Science: New York, 1989.

    Google Scholar 

  65. Wang, Y.-F.; Liu, G.-Y.; Sun, L.-D.; Xiao, J.-W.; Zhou, J.-C.; Yan, C.-H. Nd3+-sensitized upconversion nanophosphors: Efficient in vivo bioimaging probes with minimized heating effect. ACS Nano 2013, 7, 7200–7206.

    Article  Google Scholar 

  66. Balda, R.; Fernandez, J.; Mendioroz, A.; Adam, J. L.; Boulard, B. Temperature-dependent concentration quenching of Nd3+ fluorescence in fluoride glasses. J. Phys.-Condens. Matter 1994, 6, 913–924.

    Article  Google Scholar 

  67. Serqueira, E. O.; Dantas, N. O.; Monte, A. F. G.; Bell, M. J. V. Judd Ofelt calculation of quantum efficiencies and branching ratios of Nd3+ doped glasses. J. Non-Cryst. Solids 2006, 352, 3628–3632.

    Article  Google Scholar 

  68. De la Rosa-Cruz, E.; Kumar, G. A.; Diaz-Torres, L. A.; Martinez, A.; Barbosa-Garcia, O. Spectroscopic characterization of Nd3+ ions in barium fluoroborophosphate glasses. Opt. Mater. 2001, 18, 321–329.

    Article  Google Scholar 

  69. Tanabe, S. Optical transitions of rare earth ions for amplifiers: How the local structure works in glass. J. Non-Cryst. Solids 1999, 259, 1–9.

    Article  Google Scholar 

  70. Jaque, D.; Capmany, J.; Luo, Z. D.; Sole, J. G. Optical bands and energy levels of Nd3+ ion in the YAl3(BO3)4 nonlinear laser crystal. J. Phys.-Condens. Matter 1997, 9, 9715–9729.

    Article  Google Scholar 

  71. Dong, N. N.; Pedroni, M.; Piccinelli, F.; Conti, G.; Sbarbati, A.; Ramirez-Hernandez, J. E.; Maestro, L. M.; Iglesias-de la Cruz, M. C.; Sanz-Rodriguez, F.; Juarranz, A.; et al. NIR-to-NIR two-photon excited CaF2:Tm3+,Yb3+ nanoparticles: Multifunctional nanoprobes for highly penetrating fluorescence bio-imaging. ACS Nano 2011, 5, 8665–8671.

    Article  Google Scholar 

  72. Pedroni, M.; Piccinelli, F.; Passuello, T.; Polizzi, S.; Ueda, J.; Haro-Gonzalez, P.; Maestro, L. M.; Jaque, D.; Garcia-Sole, J.; Bettinelli, M.; Speghini, A. Water (H2O and D2O) dispersible NIR-to-NIR upconverting Yb3+/Tm3+ doped MF2 (M = Ca, Sr) colloids: Influence of the host crystal. Cryst. Growth Des. 2013, 13, 4906–4913.

    Article  Google Scholar 

  73. Warrier, A. V. R.; Krishnan, R. S. Raman spectrum of strontium fluoride (SrF2). Naturwissenschaften 1964, 51, 8–9.

    Article  Google Scholar 

  74. Payne, S. A.; Caird, J. A.; Chase, L. L.; Smith, L. K.; Nielsen, N. D.; Krupke, W. F. Spectroscopy and gain measurements of Nd3+ in SrF2 and other fluorite-structure hosts. J. Opt. Soc. Am. 1991, 8, 726–740.

    Article  Google Scholar 

  75. Krischer, C. Measurement of sound velocities using Bragg diffraction of light and applications to lanthanum fluoride. Appl. Phys. Lett. 1968, 13, 310–311.

    Article  Google Scholar 

  76. Kaminskii, A. A.; Osiko, V. V.; Udovenchik, V. T. Room-temperature induced emission of neodymium-doped SrF2·LaF3 crystals. J. Appl. Spectrosc. 1967, 6, 23–25.

    Article  Google Scholar 

  77. Yang, K.; Zhang, S. A.; Zhang, G. X.; Sun, X. M.; Lee, S. T.; Liu, Z. A. Graphene in mice: Ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett. 2010, 10, 3318–3323.

    Article  Google Scholar 

  78. Al Faraj, A.; Fauvelle, F.; Luciani, N.; Lacroix, G.; Levy, M.; Cremillieux, Y.; Canet-Soulas, E. In vivo biodistribution and biological impact of injected carbon nanotubes using magnetic resonance techniques. Int. J. Nanomedicine 2011, 6, 351–361.

    Article  Google Scholar 

  79. Liao, W. Y.; Li, H. J.; Chang, M. Y.; Tang, A. C. L.; Hoffman, A. S.; Hsieh, P. C. H. Comprehensive characterizations of nanoparticle biodistribution following systemic injection in mice. Nanoscale 2013, 5, 11079–11086.

    Article  Google Scholar 

  80. Hirn, S.; Semmler-Behnke, M.; Schleh, C.; Wenk, A.; Lipka, J.; Schaeffler, M.; Takenaka, S.; Moeller, W.; Schmid, G.; Simon, U.; et al. Particle size-dependent and surface charge-dependent biodistribution of gold nanoparticles after intravenous administration. Eur. J. Pharm. Biopharm. 2011, 77, 407–416.

    Article  Google Scholar 

  81. Xiao, K.; Li, Y.; Luo, J.; Lee, J. S.; Xiao, W.; Gonik, A. M.; Agarwal, R. G.; Lam, K. S. The effect of surface charge on in vivo biodistribution of PEG-oligocholic acid based micellar nanoparticles. Biomaterials 2011, 32, 3435–3446.

    Article  Google Scholar 

  82. Balogh, L.; Nigavekar, S. S.; Nair, B. M.; Lesniak, W.; Zhang, C.; Sung, L. Y.; Kariapper, M. S. T.; El-Jawahri, A.; Llanes, M.; Bolton, B.; et al. Significant effect of size on the in vivo biodistribution of gold composite nanodevices in mouse tumor models. Nanomedicine 2007, 3, 281–296.

    Article  Google Scholar 

  83. Kumar, R.; Roy, I.; Ohulchanskky, T. Y.; Vathy, L. A.; Bergey, E. J.; Sajjad, M.; Prasad, P. N. In vivo biodistribution and clearance studies using multimodal organically modified silica nanoparticles. ACS Nano 2010, 4, 699–708.

    Article  Google Scholar 

  84. Yoshio, T.; Jin, M.; Minfang, Z.; Mei, Y.; Iwao, W.; Sumio, I.; Hiroshi, I.; Masako, Y. Histological assessments for toxicity and functionalization-dependent biodistribution of carbon nanohorns. Nanotechnology 2011, 22, 265106.

    Article  Google Scholar 

  85. Zhang, X. D.; Wu, H. Y.; Wu, D.; Wang, Y. Y.; Chang, J. H.; Zhai, Z. B.; Meng, A. M.; Liu, P. X.; Zhang, L. A.; Fan, F. Y. Toxicologic effects of gold nanoparticles in vivo by different administration routes. Int. J. Nanomedicine 2010, 5, 771–781.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Jaque García.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Villa, I., Vedda, A., Cantarelli, I.X. et al. 1.3 μm emitting SrF2:Nd3+ nanoparticles for high contrast in vivo imaging in the second biological window. Nano Res. 8, 649–665 (2015). https://doi.org/10.1007/s12274-014-0549-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0549-1

Keywords

Navigation