Skip to main content
Log in

Bivariate-continuous-tunable interface memristor based on Bi2S3 nested nano-networks

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

A memristor that can emulate biological synapses is a promising basic-processing unit in neural-network computation. Here we propose a new-conceptual memristor based on a memoristive interface composed of two types of non-memristive materials, successfully realizing continuously tunable resistance controlled by both voltage (current) and applied time of a single pulse with a swift response comparable with synapses. The brain-like memorizing capability of the memristor is demonstrated. The memoristive mechanism in the interface is thought to be dominated by a Schottky barrier tuned by the capture/release of the carriers in interface traps with dispersive energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. DARPA/DSO BAA08-28. Systems of Neuromorphic Adaptive Plastic Scalable Electronics (SyNAPSE). http://www.darpa.mil/dso/solicitations/BAA08-28.pdf (accessed Nov. 2rd, 2008).

  2. Nicholls, J. G.; Martin, A. R.; Wallace, B. G.; Fuchs, P. A., From neuron to brain; Sinauer Associates Sunderland: MA, 2001.

    Google Scholar 

  3. Dieck, S. T.; Brandstatter, J. H. Ribbon synapses of the retina. Cell Tissue Res. 2006, 326, 339–346.

    Article  Google Scholar 

  4. Martin, S. J.; Grimwood, P. D.; Morris, R. G. M. Synaptic plasticity and memory: An evaluation of the hypothesis. Annu. Rev. Neurosci. 2000, 23, 649–711.

    Article  Google Scholar 

  5. Song, S.; Miller, K. D.; Abbott, L. F. Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. Nat. Neurosci. 2000, 3, 919–926.

    Article  Google Scholar 

  6. Tang, Y.; Nyengaard, J. R.; De Groot, D. M. G.; Gundersen, H. J. G. Total regional and global number of synapses in the human brain neocortex. Synapse 2001, 41, 258–273.

    Article  Google Scholar 

  7. Joshi, J.; Parker, A. C.; Hsu, C. C. A carbon nanotube cortical neuron with spike-timing-dependent plasticity. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2009, 1651–1654.

    Google Scholar 

  8. Jo, S. H.; Chang, T.; Ebong, I.; Bhadviya, B. B.; Mazumder, P.; Lu, W. Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 2010, 10, 297–1301.

    Article  Google Scholar 

  9. Alibart, F.; Pleutin, S.; Guerin, D.; Novembre, C.; Lenfant, S.; Lmimouni, K.; Gamrat, C.; Vuillaume, D. An organic nanoparticle transistor gehaving as a biological spiking synapse. Adv. Funct. Mater. 2010, 20, 330–337.

    Article  Google Scholar 

  10. Martinez, J. J.; Toledo, J.; Garrigos, J.; Ferrandez, J.; Fernandez-Jover, E. Model and hardware emulation of the first synapse of the retina using discrete-time cellular neural networks. 16th IEEE International Conference on Image Processing, 2009, 2677–2680.

    Google Scholar 

  11. Strukov, D. B.; Snider, G. S.; Stewart, D. R.; Williams, R. S. The missing memristor found. Nature 2008, 453, 80–83.

    Article  Google Scholar 

  12. Chua, L. Memristor: The missing circuit element. IEEE Trans. Circuit Theory 1971, 18, 507–519.

    Article  Google Scholar 

  13. Kwon, D. H.; Kim, K. M.; Jang, J. H.; Jeon, J. M.; Lee, M. H.; Kim, G. H.; Li, X. S.; Park, G. S.; Lee, B.; Han, S. et al. Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. Nat. Nanotechnol. 2010, 5, 148–153.

    Article  Google Scholar 

  14. Yang, J. J.; Pickett, M. D.; Li, X. M.; Ohlberg, D. A. A.; Stewart, D. R.; Williams, R. S. Memristive switching mechanism for metal/oxide/metal nanodevices. Nat. Nanotechnol. 2008, 3, 429–433.

    Article  Google Scholar 

  15. Kuzum, D.; Jeyasingh, R. G. D.; Lee, B.; Wong, H. S. P. Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing. Nano Lett. 2012, 12, 2179–2186.

    Article  Google Scholar 

  16. Seo, K.; Kim, I.; Jung, S.; Jo, M.; Park, S.; Park, J.; Shin, J.; Biju, K. P.; Kong, J.; Lee, K. et al. Analog memory and spike-timing-dependent plasticity characteristics of a nanoscale titanium oxide bilayer resistive switching device. Nanotechnology 2011, 22, 254023.

    Article  Google Scholar 

  17. Ohno, T.; Hasegawa, T.; Tsuruoka, T.; Terabe, K.; Gimzewski, J. K.; Aono, M. Short-term plasticity and long-term potentiation mimicked in single inorganic synapses. Nat. Mater. 2011, 10, 591–595.

    Article  Google Scholar 

  18. Wang, Z. Q.; Xu, H. Y.; Li, X. H.; Yu, H.; Liu, Y. C.; Zhu, X. J. Synaptic learning and memory functions achieved using oxygen ion migration/diffusion in an amorphous InGaZnO memristor. Adv. Funct. Mater. 2012, 22, 2759–2764.

    Article  Google Scholar 

  19. Ziegler, M.; Soni, R.; Patelczyk, T.; Ignatov, M.; Bartsch, T.; Meuffels, P.; Kohlstedt, H. An electronic version of Pavlov’s dog. Adv. Funct. Mater. 2012, 22, 2744–2749.

    Article  Google Scholar 

  20. Chanthbouala, A.; Garcia, V.; Cherifi, R. O.; Bouzehouane, K.; Fusil, S.; Moya, X.; Xavier, S.; Yamada, H.; Deranlot, C.; Mathur, N. D. et al. A ferroelectric memristor. Nat. Mater. 2012, 11, 860–864.

    Article  Google Scholar 

  21. Jeong, D. S.; Thomas, R.; Katiyar, R. S.; Scott, J. F.; Kohlstedt, H.; Petraru, A.; Hwang, C. S. Emerging memories: Resistive switching mechanisms and current status. Rep. Prog. Phys. 2012, 75, 076502.

    Article  Google Scholar 

  22. Janicka, K.; Velev, J. P.; Tsymbal, E. Y. Quantum nature of two-dimensional electron gas confinement at LaAlO3/SrTiO3 interfaces. Phys. Rev. Lett. 2009, 102, 106803.

    Article  Google Scholar 

  23. Sim, H.; Choi, H.; Lee, D.; Chang, M.; Choi, D.; Son, Y.; Lee, E. H.; Kim, W.; Park, Y.; Yoo, I. K., et al. Excellent resistance switching characteristics of Pt/SrTiO3 Schottky junction for multi-bit nonvolatile memory application. Int. El. Devices Meet. 2005, 758–761.

    Google Scholar 

  24. Li, Y. T.; Long, S. B.; Liu, Q.; Lu, H. B.; Liu, S.; Liu, M. An overview of resistive random access memory devices. Chinese Sci. Bull. 2011, 56, 3072–3078.

    Article  Google Scholar 

  25. Soci, C.; Zhang, A.; Xiang, B.; Dayeh, S.; Aplin, D.; Park, J.; Bao, X.; Lo, Y.; Wang, D. ZnO nanowire UV photodetectors with high internal gain. Nano Lett. 2007, 7, 1003–1009.

    Article  Google Scholar 

  26. Guo, C. F.; Cao, S.; Zhang, J.; Tang, H.; Guo, S.; Tian, Y.; Liu, Q. Topotactic transformations of superstructures: From thin films to two-dimensional networks to nested two-dimensional networks. J. Am. Chem. Soc. 2011, 133, 8211–8215.

    Article  Google Scholar 

  27. Ahire, R. R.; Sharma, R. P. Photoelectrochemical characterization of Bi2S3 thin films deposited by modified chemical bath deposition. Indian J. Eng. Mater. S. 2006, 13, 140–144.

    Google Scholar 

  28. Bhattacharya, R. N.; Pramanik, P. Semiconductor liquid junction solar cell based on chemically deposited Bi2S3 thin film and some semi-conducting properties of bismuth chalcogenides. J. Electrochem. Soc. 1982, 129, 332–335.

    Article  Google Scholar 

  29. Goutman, J. D.; Glowatzki, E. Time course and calcium dependence of transmitter release at a single ribbon synapse. P. Natl. Acad. Sci. USA 2007, 104, 16341–16346.

    Article  Google Scholar 

  30. Magasinski, A.; Dixon, P.; Hertzberg, B.; Kvit, A.; Ayala, J.; Yushin, G. High-performance lithium-ion anodes using a hierarchical bottom-up approach. Nat. Mater. 2010, 9, 353–358.

    Article  Google Scholar 

  31. Zhang, L. L.; Zhao, X. S. Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 2009, 38, 2520–2531.

    Article  Google Scholar 

  32. Waser, R.; Aono, M. Nanoionics-based resistive switching memories. Nat. Mater. 2007, 6, 833–840.

    Article  Google Scholar 

  33. Kuzum, D.; Yu, S.; Wong, H. S. P. Synaptic electronics: Materials, devices and applications. Nanotechnology 2013, 24, 382001.

    Article  Google Scholar 

  34. Bao, H.; Li, C. M.; Cui, X.; Song, Q.; Yang, H.; Guo, J. Single-crystalline Bi2S3 nanowire network film and its optical switches. Nanotechnology 2008, 19, 335302.

    Article  Google Scholar 

  35. Valov, I.; Waser, R.; Jameson, J. R.; Kozicki, M. N. Electrochemical metallization memories-fundamentals, applications, prospects. Nanotechnology 2011, 22, 254003.

    Article  Google Scholar 

  36. Fujimoto, M.; Koyama, H.; Nishi, Y.; Suzuki, T. Resistive switching properties of high crystallinity and low-resistance Pr0.7Ca0.3MnO3 thin film with point-contacted Ag electrodes. Appl. Phys. Lett. 2007, 91, 223504.

    Article  Google Scholar 

  37. Liu, Q.; Guan, W.; Long, S.; Jia, R.; Liu, M.; Chen, J. Resistive switching memory effect of ZrO2 films with Zr+ implanted. Appl. Phys. Lett. 2008, 92, 012117.

    Article  Google Scholar 

  38. Kim, K. M.; Choi, B. J.; Lee, M. H.; Kim, G. H.; Song, S. J.; Seok, J. Y.; Yoon, J. H.; Han, S.; Hwang, C. S. A detailed understanding on the electronic bipolar resistance switching behavior in Pt/TiO2/Pt structure. Nanotechnology 2011, 22, 254010.

    Article  Google Scholar 

  39. Sze, S. M.; Ng, K. K. Physics of Semiconductor Devices; Wiley-Interscience, 2006.

    Book  Google Scholar 

  40. Xu, Z. T.; Jin, K. J.; Gu, L.; Jin, Y. L.; Ge, C.; Wang, C.; Guo, H. Z.; Lu, H. B.; Zhao, R. Q.; Yang, G. Z. Evidence for a crucial role played by oxygen vacancies in LaMnO3 resistive switching memories. Small 2012, 8, 1279–1284.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian Liu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Y., Guo, C., Guo, S. et al. Bivariate-continuous-tunable interface memristor based on Bi2S3 nested nano-networks. Nano Res. 7, 953–962 (2014). https://doi.org/10.1007/s12274-014-0456-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0456-5

Keywords

Navigation