Skip to main content
Log in

Composition-dependent ultra-high photoconductivity in ternary CdS x Se1−x nanobelts as measured by optical pump-terahertz probe spectroscopy

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

We employ optical pump-terahertz probe spectroscopy to investigate the composition-dependent photoconductivity in ternary CdS x Se1−x nanobelts. The observed carrier dynamics of CdS nanobelts display much shorter lifetime than those of ternary CdS x Se1−x nanobelts. This indicates the implementation of CdS nanobelts as ultrafast switching devices with a switching speed potentially up to 46.7 GHz. Surprisingly, ternary CdS x Se1−x nanobelts are found to exhibit much higher photoconductivity than binary CdS and CdSe. This is attributed to the higher photocarrier densities in ternary compounds. In addition, the presence of Se in samples resulted in prominent CdSe-like transverse optical (TO) phonon modes due to electron-phonon interactions. The strength of this mode shows a large drop upon photoexcitation but recovers gradually with time. These results demonstrated that growth of ternary nanostructures can be utilized to alleviate the high surface defect density in nanostructures and improve their photoconductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tian, B.; Zheng, X.; Kempa, T. J.; Fang, Y.; Yu, N.; Yu, G.; Huang, J.; Lieber, C. M. Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 2007, 449, 885–889.

    Article  CAS  Google Scholar 

  2. Yan, R. X.; Gargas, D.; Yang, P. D. Nanowire photonics. Nat. Photon. 2009, 3, 569–576.

    Article  CAS  Google Scholar 

  3. Cao, L. Y.; White, J. S.; Park, J.-S.; Schuller, J. A.; Clemens, B. M.; Brongersma, M. L. Engineering light absorption in semiconductor nanowire devices. Nat. Mater. 2009, 8, 643–647.

    Article  CAS  Google Scholar 

  4. Dietl, T.; Ohno, H. Engineering magnetism in semiconductors. Mater. Today 2006, 9, 18–26.

    Article  CAS  Google Scholar 

  5. Wang, J.; Gudiksen, M. S.; Duan, X.; Cui, Y.; Lieber, C. M. Highly polarized photoluminescence and photodetection from single indium phosphide nanowires. Science 2001, 293, 1455–1457.

    Article  CAS  Google Scholar 

  6. Kelzenberg, M. D.; Turner-Evans, D. B.; Kayes, B. M.; Filler, M. A.; Putnam, M. C.; Lewis, N. S.; Atwater, H. A. Photovoltaic measurements in single-nanowire silicon solar cells. Nano Lett. 2008, 8, 710–714.

    Article  CAS  Google Scholar 

  7. Cui, Y.; Wei, Q. Q.; Park, H.; Lieber, C. M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 2001, 293, 1289–1292.

    Article  CAS  Google Scholar 

  8. Ahn, Y. H.; Park, J. Efficient visible light detection using individual germanium nanowire field effect transistors. Appl. Phys. Lett. 2007, 91, 162102.

    Article  Google Scholar 

  9. Li, Q. H.; Liang, Y. X.; Wan, Q.; Wang, T. H. Oxygen sensing characteristics of individual ZnO nanowire transistors. Appl. Phys. Lett. 2004, 85, 6389–6391.

    Article  CAS  Google Scholar 

  10. Li, L.; Lu, H.; Yang, Z. Y.; Tong, L. M.; Bando, Y.; Golberg, D. Bandgap-graded CdSxSe1−x nanowires for high-performance field-effect transistors and solar cells. Adv. Mater. 2013, 25, 1109–1113.

    Article  CAS  Google Scholar 

  11. Fang, X. S.; Bando, Y.; Liao, M. Y.; Gautam, U. K.; Zhi, C. Y.; Dierre, B.; Liu, B. D.; Zhai, T. Y.; Sekiguchi, T.; Koide, Y.; et al. Single-crystalline ZnS nanobelts as ultraviolet-light sensors. Adv. Mater. 2009, 21, 2034–2039.

    Article  CAS  Google Scholar 

  12. Hu, L. H.; Sun, K. Q; Peng, Q.; Xu, B. O.; Li, Y. D. Surface active sites on Co3O4 nanobelt and nanocube model catalysts for CO oxidation. Nano Res. 2010, 3, 363–368.

    Article  CAS  Google Scholar 

  13. Liao, Z.-M.; Lu, Y.; Xu, J.; Zhang, J.-M.; Yu, D.-P. Temperature dependence of photoconductivity and persistent photoconductivity of single ZnO nanowires. Appl. Phys. A: Mater. Sci. Proc. 2009, 95, 363–366.

    Article  CAS  Google Scholar 

  14. Tamang, R.; Varghese, B.; Mhaisalkar, S. G.; Tok, E. S.; Sow, C. H. Probing the photoresponse of individual Nb2O5 nanowires with global and localized laser beam irradiation. Nanotechnology 2011, 22, 115202.

    Article  Google Scholar 

  15. Zhai, T. Y.; Fang, X. S.; Liao, M. Y.; Xu, X. J.; Zeng, H. B.; Yoshio, B.; Golberg, D. A comprehensive review of one-dimensional metal-oxide nanostructure photodetectors. Sensors 2009, 9, 6504–6529.

    Article  CAS  Google Scholar 

  16. Mondal, S. P.; Ray, S. K. Enhanced broadband photoresponse of Ge/CdS nanowire radial heterostructures. Appl. Phys. Lett. 2009, 94, 223119–3.

    Article  Google Scholar 

  17. Soci, C.; Zhang, A.; Xiang, B.; Dayeh, S. A.; Aplin, D. P. R.; Park, J.; Bao, X. Y.; Lo, Y. H.; Wang, D. ZnO nanowire UV photodetectors with high internal gain. Nano Lett. 2007, 7, 1003–1009.

    Article  CAS  Google Scholar 

  18. Hu, L. F.; Yan, J.; Liao, M. Y.; Xiang, H. J.; Gong, X. G.; Zhang, L.; Fang, X. S. An optimized ultraviolet-a light photodetector with wide-range photoresponse based on ZnS/ZnO biaxial nanobelt. Adv. Mater. 2012, 24, 2305–2309.

    Article  CAS  Google Scholar 

  19. Zhao, L. J.; Hu, L. F.; Fang, X. S. Growth and device application of CdSe nanostructures. Adv. Funct. Mater. 2012, 22, 1551–1566.

    Article  CAS  Google Scholar 

  20. Fang, X. S.; Hu, L. F.; Huo, K. F.; Gao, B.; Zhao, L. J.; Liao, M. Y.; Chu, P. K.; Bando, Y.; Golberg, D. New ultraviolet photodetector based on individual Nb2O5 nanobelts. Adv. Funct. Mater. 2011, 21, 3907–3915.

    Article  CAS  Google Scholar 

  21. Thunich, S.; Prechtel, L.; Spirkoska, D.; Abstreiter, G.; Morral, A. F.; Holleitner, A. W. Photocurrent and photoconductance properties of a GaAs nanowire. Appl. Phys. Lett. 2009, 95, 083111.

    Article  Google Scholar 

  22. Pettersson, H.; Trägårdh, J.; Persson, A. I.; Landin, L.; Hessman, D.; Samuelson, L. Infrared photodetectors in heterostructure nanowires. Nano Lett. 2006, 6, 229–232.

    Article  CAS  Google Scholar 

  23. Beard, M. C.; Turner, G. M.; Schmuttenmaer, C. A. Size-dependent photoconductivity in CdSe nanoparticles as measured by time-resolved terahertz spectroscopy. Nano Lett. 2002, 2, 983–987.

    Article  CAS  Google Scholar 

  24. Parkinson, P.; Lloyd-Hughes, J.; Gao, Q.; Tan, H. H.; Jagadish, C.; Johnston, M. B.; Herz, L. M. Transient terahertz conductivity of GaAs nanowires. Nano Lett. 2007, 7, 2162–2165.

    Article  CAS  Google Scholar 

  25. Beard, M. C.; Turner, G. M.; Schmuttenmaer, C. A. Transient photoconductivity in GaAs as measured by time-resolved terahertz spectroscopy. Phys. Rev. B 2000, 62, 15764–15777.

    Article  CAS  Google Scholar 

  26. Schmuttenmaer, C. A. Exploring dynamics in the far-infrared with terahertz spectroscopy. Chem. Rev. 2004, 104, 1759–1780.

    Article  CAS  Google Scholar 

  27. Nienhuys, H.-K.; Sundstrom, V. Influence of plasmons on terahertz conductivity measurements. Appl. Phys. Lett. 2005, 87, 012101.

    Article  Google Scholar 

  28. Jepsen, P. U.; Schairer, W.; Libon, I. H.; Lemmer, U.; Hecker, N. E.; Birkholz, M.; Lips, K.; Schall, M. Ultrafast carrier trapping in microcrystalline silicon observed in optical pump—terahertz probe measurements. Appl. Phys. Lett. 2001, 79, 1291–1293.

    Article  Google Scholar 

  29. Cooke, D. G.; MacDonald, A. N.; Hryciw, A.; Wang, J.; Li, Q.; Meldrum, A.; Hegmann, F. A. Transient terahertz conductivity in photoexcited silicon nanocrystal films. Phys. Rev. B 2006, 73, 193311.

    Article  Google Scholar 

  30. Ahn, H.; Ku, Y. P.; Wang, Y. C.; Chuang, C. H.; Gwo, S.; Pan, C.-L. Terahertz spectroscopic study of vertically aligned InN nanorods. Appl. Phys. Lett. 2007, 91, 163105.

    Article  Google Scholar 

  31. Kaindl, R. A.; Carnahan, M. A.; Hägele, D.; Lövenich, R.; Chemla, D. S. Ultrafast terahertz probes of transient conducting and insulating phases in an electron-hole gas. Nature 2003, 423, 734–738.

    Article  CAS  Google Scholar 

  32. Beard, M. C.; Turner, G. M.; Murphy, J. E.; Micic, O. I.; Hanna, M. C.; Nozik, A. J.; Schmuttenmaer, C. A. Electronic coupling in InP nanoparticle arrays. Nano Lett. 2003, 3, 1695–1699.

    Article  CAS  Google Scholar 

  33. George, P. A.; Strait, J.; Dawlaty, J.; Shivaraman, S.; Chandrashekhar, M.; Rana, F.; Spencer, M. G. Ultrafast optical-pump terahertz-probe spectroscopy of the carrier relaxation and recombination dynamics in epitaxial graphene. Nano Lett. 2008, 8, 4248–4251.

    Article  CAS  Google Scholar 

  34. Strait, J. H.; Wang, H.; Shivaraman, S.; Shields, V.; Spencer, M.; Rana, F. Very slow cooling dynamics of photoexcited carriers in graphene observed by optical-pump terahertz-probe spectroscopy. Nano Lett. 2011, 11, 4902–4906.

    Article  CAS  Google Scholar 

  35. Jnawali, G.; Rao, Y.; Yan, H.; Heinz, T. F. Observation of a transient decrease in terahertz conductivity of single-layer graphene induced by ultrafast optical excitation. Nano Lett. 2013, 13, 524–530.

    Article  CAS  Google Scholar 

  36. Docherty, C. J.; Lin, C.-T.; Joyce, H. J.; Nicholas, R. J.; Herz, L. M.; Li, L.-J.; Johnston, M. B. Extreme sensitivity of graphene photoconductivity to environmental gases. Nat. Commun. 2012, 3, 1228.

    Article  Google Scholar 

  37. Baxter, J. B.; Schmuttenmaer, C. A. Conductivity of ZnO nanowires, nanoparticles, and thin films using time-resolved terahertz spectroscopy. J. Phys. Chem. B 2006, 110, 25229–25239.

    Article  CAS  Google Scholar 

  38. Lu, J. P.; Sun, C.; Zheng, M. R.; Nripan, M.; Liu, H. W.; Chen, G. S.; Zhang, X. H.; Subodh G, M.; Sow, C. H. Facile one-step synthesis of CdSxSe1−x nanobelts with uniform and controllable stoichiometry. J. Phys. Chem. C 2011, 115, 19538–19545.

    Article  CAS  Google Scholar 

  39. Pan, A. L.; Zhou, W. C.; Leong, E. S. P.; Liu, R. B.; Chin, A. H.; Zou, B. S.; Ning, C. Z. Continuous alloy-composition spatial grading and superbroad wavelength-tunable nanowire lasers on a single chip. Nano Lett. 2009, 9, 784–788.

    Article  CAS  Google Scholar 

  40. Li, G. H.; Jiang, Y.; Wang, Y.; Wang, C.; Sheng, Y. P.; Jie, J. S.; Zapien, J. A.; Zhang, W. J.; Lee, S.-T. Synthesis of CdSxSe1−x nanoribbons with uniform and controllable compositions via sulfurization: Optical and electronic properties studies. J. Phys. Chem. C 2009, 113, 17183–17188.

    Article  CAS  Google Scholar 

  41. Pan, A. L.; Wang, X.; He, P. B.; Zhang, Q. L.; Wan, Q.; Zacharias, M.; Zhu, X.; Zou, B. S. Color-changeable optical transport through Se-doped CdS 1d nanostructures. Nano Lett. 2007, 7, 2970–2975.

    Article  CAS  Google Scholar 

  42. Liu, H. W.; Lu, J. P.; Teoh, H. F.; Li, D. C.; Feng, Y. P.; Tang, S. H.; Sow, C. H.; Zhang, X. H. Defect engineering in CdSxSe1−x nanobelts: An insight into carrier relaxation dynamics via optical pump-terahertz probe spectroscopy. J. Phys. Chem. C 2012, 116, 26036–26042.

    Article  CAS  Google Scholar 

  43. Beard, M. C.; Turner, G. M.; Schmuttenmaer, C. A. Subpicosecond carrier dynamics in low-temperature grown GaAs as measured by time-resolved terahertz spectroscopy. J. Appl. Phys. 2001, 90, 5915–5923.

    Article  CAS  Google Scholar 

  44. Liu, H. W.; Lu, J. P.; Fan, H. M.; Sow, C. H.; Tang, S. H.; Zhang, X. H. Temperature and composition dependence of photoluminescence dynamics in CdSxSe1−x (0 ⩽ x ⩽ 1) nanobelts. J. Appl. Phys. 2012, 111, 073112.

    Article  Google Scholar 

  45. Tsai, T.-R.; Chen, S.-J.; Chang, C.-F.; Hsu, S.-H.; Lin, T.-Y.; Chi, C.-C. Terahertz response of GaN thin films. Opt. Express 2006, 14, 4898–4907.

    Article  CAS  Google Scholar 

  46. García-Vidal, F. J.; Pitarke, J. M.; Pendry, J. B. Effective medium theory of the optical properties of aligned carbon nanotubes. Phys. Rev. Lett. 1997, 78, 4289–4292.

    Article  Google Scholar 

  47. Weissker, H. C.; Furthmüller, J.; Bechstedt, F. Validity of effective-medium theory for optical properties of embedded nanocrystallites from ab-initio supercell calculations. Phys. Rev. B 2003, 67, 165322.

    Article  Google Scholar 

  48. Tolstoy, V. P.; Chernyshova, I. V.; Skryshevsky, V. A. Handbook of infrared spectroscopy of ultrathin films; John Wiley & Sons, Inc: USA, 2003.

    Book  Google Scholar 

  49. Lu, J. P.; Liu, H. W.; Sun, C.; Zheng, M. R.; Nripan, M.; Chen, G. S.; Subodh, G. M.; Zhang, X. H.; Sow, C. H. Optical and electrical applications of ZnSxSe1−x nanowires-network with uniform and controllable stoichiometry. Nanoscale 2012, 4, 976–981.

    Article  CAS  Google Scholar 

  50. Parayanthal, P.; Pollak, F. H. Raman scattering in alloy semiconductors: “Spatial correlation” model. Phys. Rev. Lett. 1984, 52, 1822–1825.

    Article  CAS  Google Scholar 

  51. Chang, I. F.; Mitra, S. S. Application of a modified random-element-isodisplacement model to long-wavelength optic phonons of mixed crystals. Phys. Rev. 1968, 172, 924–933.

    Article  CAS  Google Scholar 

  52. Yong, C. K.; Noori, K.; Gao, Q.; Joyce, H. J.; Tan, H. H.; Jagadish, C.; Giustino, F.; Johnston, M. B.; Herz, L. M. Strong carrier lifetime enhancement in GaAs nanowires coated with semiconducting polymer. Nano Lett. 2012, 12, 6293–6301.

    Article  CAS  Google Scholar 

  53. Joyce, H. J.; Wong-Leung, J.; Yong, C.-K.; Docherty, C. J.; Paiman, S.; Gao, Q.; Tan, H. H.; Jagadish, C.; Lloyd-Hughes, J.; Herz, L. M.; et al. Ultralow surface recombination velocity in InP nanowires probed by terahertz spectroscopy. Nano Lett. 2012, 12, 5325–5330.

    Article  CAS  Google Scholar 

  54. Parkinson, P.; Dodson, C.; Joyce, H. J.; Bertness, K. A.; Sanford, N. A.; Herz, L. M.; Johnston, M. B. Noncontact measurement of charge carrier lifetime and mobility in GaN nanowires. Nano Lett. 2012, 12, 4600–4604.

    Article  CAS  Google Scholar 

  55. Joyce, H. J.; Gao, Q.; Hoe Tan, H.; Jagadish, C.; Kim, Y.; Zou, J.; Smith, L. M.; Jackson, H. E.; Yarrison-Rice, J. M.; Parkinson, P.; et al. III–V semiconductor nanowires for optoelectronic device applications. Prog. Quant. Electron. 2011, 35, 23–75.

    Article  Google Scholar 

  56. Baxter, J. B.; Schmuttenmaer, C. A. Carrier dynamics in bulk ZnO II. Transient photoconductivity measured by time-resolved terahertz spectroscopy. Phys. Rev. B 2009, 80, 235206.

    Article  Google Scholar 

  57. Sung, T. K.; Kang, J. H.; Jang, D. M.; Myung, Y.; Jung, G. B.; Kim, H. S.; Jung, C. S.; Cho, Y. J.; Park, J.; Lee, C.-L. CdSSe layer-sensitized TiO2 nanowire arrays as efficient photoelectrodes. J. Mater. Chem. 2011, 21, 4553–4561.

    Article  CAS  Google Scholar 

  58. Anderson, P. W. Absence of diffusion in certain random lattices. Phys. Rev. 1958, 109, 1492–1505.

    Article  CAS  Google Scholar 

  59. Xie, X.; Dai, J. M.; Zhang, X. C. Coherent control of THz wave generation in ambient air. Phys. Rev. Lett. 2006, 96, 075005.

    Google Scholar 

  60. Karpowicz, N.; Dai, J.; Lu, X.; Chen, Y.; Yamaguchi, M.; Zhao, H. W.; Zhang, X. C.; Zhang, L. L.; Zhang, C. L.; Price-Gallagher, M.; et al. Coherent heterodyne time-domain spectrometry covering the entire “terahertz gap”. Appl. Phys. Lett. 2008, 92, 011131.

    Article  Google Scholar 

  61. Lu, J.; Liu, H.; Lim, S. X.; Tang, S. H.; Sow, C. H.; Zhang, X. Transient photoconductivity of ternary CdSSe nanobelts as measured by time-resolved terahertz spectroscopy. J. Phys. Chem. C 2013, 117, 12379–12384.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junpeng Lu, Xinhai Zhang or Chorng Haur Sow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, H., Lu, J., Zheng, M. et al. Composition-dependent ultra-high photoconductivity in ternary CdS x Se1−x nanobelts as measured by optical pump-terahertz probe spectroscopy. Nano Res. 6, 808–821 (2013). https://doi.org/10.1007/s12274-013-0359-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-013-0359-x

Keywords

Navigation