Skip to main content
Log in

Mechanical properties of freely suspended atomically thin dielectric layers of mica

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

We have studied the elastic deformation of freely suspended atomically thin sheets of muscovite mica, a widely used electrical insulator in its bulk form. Using an atomic force microscope, we carried out bending test experiments to determine the Young’s modulus and the initial pre-tension of mica nanosheets with thicknesses ranging from 14 layers down to just one bilayer. We found that their Young’s modulus is high (190 GPa), in agreement with the bulk value, which indicates that the exfoliation procedure employed to fabricate these nanolayers does not introduce a noticeable amount of defects. Additionally, ultrathin mica shows low pre-strain and can withstand reversible deformations up to tens of nanometers without breaking. The low pre-tension and high Young’s modulus and breaking force found in these ultrathin mica layers demonstrates their prospective use as a complement for graphene in applications requiring flexible insulating materials or as reinforcement in nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V. and Geim. A. K. Two-dimensional atomic crystals. P. Natl. Acad. Sci. USA 2005, 102, 10451–10453.

    Article  CAS  Google Scholar 

  2. Blake, P.; Brimicombe, P. D.; Nair, R. R.; Booth, T. J.; Jiang, D.; Schedin, F.; Ponnmarenko, L. A.; Morozov, S. V.; Gleeson, H. F.; Hill, E. W. et al. Graphene-based liquid crystal device. Nano Lett. 2008, 8, 1704–1708.

    Article  Google Scholar 

  3. Eda, G.; Fanchini, G. and Chhowalla, M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 2008, 3, 270–274.

    Article  CAS  Google Scholar 

  4. Kim, K.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. H.; Kim, P.; Choi, J. Y. and Hong, B. H. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457, 706–710.

    Article  CAS  Google Scholar 

  5. Mak, K. F.; Lee, C.; Hone, J.; Shan, J. and Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.

    Article  Google Scholar 

  6. Splendiani, A.; Sun, L.; Zhang, Y.; Li, T.; Kim, J.; Chim, C. -Y.; Galli, G. and Wang, F. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 10, 1271–1275.

    Article  CAS  Google Scholar 

  7. Korn, T.; Heydrich, S.; Hirmer, M.; Schmutzler, J. and Schüller, C. Low-temperature photocarrier dynamics in monolayer MoS2. Appl. Phys. Lett. 2011, 99, 102109.

    Article  Google Scholar 

  8. Castellanos-Gomez, A.; Poot, M.; Steele, G. A.; van der Zant, H. S. J.; Agraït, N. and Rubio-Bollinger, G. Elastic properties of freely suspended MoS2 nanosheets. Adv. Mater. 2012, 24, 772–775.

    Article  CAS  Google Scholar 

  9. Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V. and Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150.

    Article  CAS  Google Scholar 

  10. Dean, C. R.; Young, A. F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, L. K. et al. Boron nitride substrates for high-quality graphene electronics. Nature Nanotechnol. 2010, 5, 722–726.

    Article  CAS  Google Scholar 

  11. Gorbachev, R. V.; Riaz, I.; Nair, R. R.; Jalil, R.; Britnell, L.; Belle, B. D.; Hill, E. W.; Novoselov, K. S.; Watanabe, K.; Taniguchi, T. et al. Hunting for monolayer boron nitride: optical and Raman signatures. Small 2011, 7, 465–468.

    Article  CAS  Google Scholar 

  12. Pacile, D.; Meyer, J. Ç.; Girit, C. O. and Zettl, A. The two-dimensional phase of boron nitride: Few-atomic-layer sheets and suspended membranes. Appl. Phys. Lett. 2008, 92, 133107.

    Article  Google Scholar 

  13. Song, L.; Ci, L.; Lu, H.; Sorokin, P. B.; Jin, C.; Ni, J.; Kvashnin, A. G.; Kvashnin, D. G.; Lou, J.; Yakobson, B. I. et al. Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett. 2010, 10, 3209–3215.

    Article  CAS  Google Scholar 

  14. Möller, M. W.; Handge, U. A.; Kunz, D. A.; Lunkenbein, T.; Altstadt, V. and Breu. J. Tailoring shear-stiff, mica-like nanoplatelets. ACS Nano 2010, 4, 717–724.

    Article  Google Scholar 

  15. Castellanos-Gomez, A.; Wojtaszek, M.; Tombros, N.; Agraït, N.; van Wees, B. J. and Rubio-Bollinger, G. Atomically thin mica flakes and their application as ultrathin insulating substrates for graphene. Small 2011, 7, 2491–2497.

    CAS  Google Scholar 

  16. Fu, Y.-T.; Zartman, G. D.; Yoonessi, M.; Drummy, L. F. and Heinz. H. Bending of layered silicates on the nanometer scale: Mechanism, stored energy, and curvature limits. J. Phys. Chem. C 2011, 115, 22292–22300.

    Article  CAS  Google Scholar 

  17. Gao, J.; Guo, W.; Geng, H.; Hou, X.; Shuai, Z. and Jiang, L. Layer-by-layer removal of insulating few-layer mica flakes for asymmetric ultra-thin nanopore fabrication. Nano Res. 2012, 5, 99–108.

    Article  CAS  Google Scholar 

  18. Low, C. G. and Zhang, Q. Ultra-thin and flat mica as gate dielectric layers. Small 2012, in press, DOI: 10.1002/smll.201200300.

  19. Lui, C. H.; Liu, L.; Mak, K. F.; Flynn, G. W. and Heinz, T. F. Ultraflat graphene. Nature 2009, 462, 339–341.

    Article  CAS  Google Scholar 

  20. Rudenko, A. N.; Keil, F. J.; Katsnelson, M. I. and Lichtenstein. A. I. Graphene adhesion on mica: role of the surface morphology. Phys. Rev. B 2011, 83, 045409.

    Article  Google Scholar 

  21. Lippert, G.; Dabrowski, J.; Lemme, M.; Marcus, C.; Seifarth, O. and Lupina, G. Direct graphene growth on insulator. Phys. Status Solidi B 2011, 248, 2619–2622.

    Article  CAS  Google Scholar 

  22. Lu, X. F.; Majewski, L. A. and Song, A. M. Electrical characterization of mica as an insulator for organic field-effect transistors. Org. Electron. 2008, 9, 473–480.

    Article  CAS  Google Scholar 

  23. Lee, G. H.; Yu, Y. J.; Lee, C.; Dean, C.; Shepard, K. L.; Kim, P. and Hone, J. Electron tunneling through atomically flat and ultrathin hexagonal boron nitride. Appl. Phys. Lett. 2011, 99, 243114.

    Article  Google Scholar 

  24. Miyake, S. 1 nm deep mechanical processing of muscovite mica by atomic force microscopy. Appl. Phys. Lett. 1995, 67, 2925–2927.

    Article  CAS  Google Scholar 

  25. He, Y.; Dong, H.; Meng, Q.; Jiang, L.; Shao, W.; He, L. and Hu, W. Mica, a potential two-dimensional crystal gate insulator for organic field-effect transistors. Adv. Mater. 2011, 23, 5502–5507.

    Article  CAS  Google Scholar 

  26. Ponomarenko, L. A.; Yang, R.; Mohiuddin, T. M.; Katsnelson, M. I.; Novoselov, K. S.; Morozov, S. V.; Zhukov, A. A.; Schedin, F.; Hill. E. W. and Geim, A. K. Effect of a high-κ environment on charge carrier mobility in graphene. Phys. Rev. Lett. 2009, 102, 206603.

    Article  CAS  Google Scholar 

  27. Ishigami, M.; Chen, J. H.; Cullen, W. G.; Fuhrer, M. S. and Williams, E. Atomic structure of graphene on SiO2. Nano Lett. 2007, 7, 1643–1648.

    Article  CAS  Google Scholar 

  28. Fan, J.; Michalik, J. M.; Casado, L.; Roddaro, S.; Ibarra, M. R. and De Teresa, J. M. Investigation of the influence on graphene by using electron-beam and photo-lithography. Solid State Commun. 2011, 151, 1574–1578.

    Article  CAS  Google Scholar 

  29. Moreno-Moreno, M.; Castellanos-Gomez, A.; Rubio-Bollinger, G.; Gomez-Herrero, J. and Agraït, N. Ultralong natural graphene nanoribbons and their electrical conductivity. Small 2009, 5, 924–927.

    Article  CAS  Google Scholar 

  30. Castellanos-Gomez, A.; Agraït, N. and Rubio-Bollinger, G. Optical identification of atomically thin dichalcogenide crystals. Appl. Phys. Lett. 2010, 96, 213116.

    Article  Google Scholar 

  31. Kim, S.; Wu, J.; Carlson, A.; Jin, S. H.; Kovalsky, A.; Glass, P.; Liu, Z.; Ahmed, N.; Elgan, S. L.; Chen, W. et al. Microstructured elastomeric surfaces with reversible adhesion and examples of their use in deterministic assembly by transfer printing. P. Natl. Acad. Sci. USA 2010, 107, 17095–17100.

    Article  CAS  Google Scholar 

  32. Meitl, M. A.; Zhu, Z. T.; Kumar, V.; Lee, K. J.; Feng, X.; Huang, Y. Y.; Adesida, I.; Nuzzo, R. G. and Rogers, J. A. Transfer printing by kinetic control of adhesion to an elastomeric stamp. Nat. Mater. 2006, 5, 33–38.

    Article  CAS  Google Scholar 

  33. Moser, J.; Verdaguer, A.; Jiménez, D.; Barreiro, A. and Bachtold, A. The environment of graphene probed by electrostatic force microscopy. Appl. Phys. Lett. 2008, 92, 123507.

    Article  Google Scholar 

  34. Nemes-Incze, P.; Osváth, Z.; Kamarás, K. and Biró, L. P. Anomalies in thickness measurements of graphene and few layer graphite crystals by tapping mode atomic force microscopy. Carbon 2008, 46, 1435–1442.

    Article  CAS  Google Scholar 

  35. Castellanos-Gomez, A.; Poot, M.; Steele, G. A.; van der Zant, H. S. J.; Agraït, N. and Rubio-Bollinger, G. Mechanical properties of freely suspended semiconducting graphene-like layers based on MoS2. Nanoscale Res. Lett. 2012, 7, 233.

    Article  Google Scholar 

  36. Lee, C.; Wei, X.; Kysar, J. W. and Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385–388.

    Article  CAS  Google Scholar 

  37. Landau, L. D. and Lifshitz, E. M. Theory of Elasticity; Oxford: New York, 1986.

    Google Scholar 

  38. Gao, S.; Kern, H.; Jin, Z. M.; Popp, T.; Jin, S. Y.; Zhang, H. F. and Zhang, B. R. Poisson’s ratio of eclogite: The role of retrogression. Earth. Planet. Sci. Lett. 2001, 192, 523–531.

    Article  CAS  Google Scholar 

  39. Poot, M. and van der Zant, H. S. J. Mechanical systems in the quantum regime. Phys. Rep. 2012, 511, 273–335.

    Article  Google Scholar 

  40. Komaragiri, U.; Begley, M. and Simmonds, J. The mechanical response of freestanding circular elastic films under point and pressure loads. J. Appl. Mech. 2005, 72, 203–212.

    Google Scholar 

  41. Timoshenko, S. and Woinowsky-Krieger, S. Theory of Plates and Shells; McGraw-Hill: New York, 1959.

    Google Scholar 

  42. Zhang, G.; Wei, Z. and Ferrell, R. E. Elastic modulus and hardness of muscovite and rectorite determined by nanoindentation. Appl. Clay Sci. 2009, 43, 271–281.

    Article  CAS  Google Scholar 

  43. Sharpe, W. N.; Pulskamp, J.; Gianola, D. S.; Eberl, C.; Polcawich, R. G. and Thompson, R. J. Strain measurements of silicon dioxide microspecimens by digital imaging processing. Exp. Mech. 2007, 47, 649–658.

    Article  CAS  Google Scholar 

  44. Li, X.; Wang, X.; Xiong, Q. and Eklund, P. C. Mechanical properties of ZnS nanobelts. Nano Lett. 2005, 5, 1982–1986.

    Article  CAS  Google Scholar 

  45. McNeil, L. E. and Grimsditch, M. Elastic moduli of muscovite mica. J. Phys.: Condens. Matter 1993, 5, 1681–1690.

    Article  CAS  Google Scholar 

  46. Gómez-Navarro, C.; Burghard, M.; and Kern, K. Elastic properties of chemically derived single graphene sheets. Nano Lett. 2008, 8, 2045–2049.

    Article  Google Scholar 

  47. Turchanin, A.; Beyer, A.; Nottbohm, C. T.; Zhang, X.; Stosch, R.; Sologubenko, A.; Mayer, J.; Hinze, P.; Weimann, T. and Golzhauser, A. One nanometer thin carbon nanosheets with tunable conductivity and stiffness. Adv. Mater. 2009, 21, 1233–1237.

    Article  CAS  Google Scholar 

  48. Kunz, D. A.; Max, E.; Weinkamer, R.; Lunkenbein, T.; Breu, J. and Fery, A. Deformation measurements on thin clay tactoids. Small 2009, 5, 1816–1820.

    Article  CAS  Google Scholar 

  49. Tapily, K.; Jakes, J. E.; Stone, D. S.; Shrestha, P.; Gu, D.; Baumgart, H. and Elmustafa, A. A. Nanoindentation investigation of HfO2 and Al2O3 films grown by atomic layer deposition. J. Electrochem. Soc. 2008, 155, H545–H551.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Andres Castellanos-Gomez or Gabino Rubio-Bollinger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castellanos-Gomez, A., Poot, M., Amor-Amorós, A. et al. Mechanical properties of freely suspended atomically thin dielectric layers of mica. Nano Res. 5, 550–557 (2012). https://doi.org/10.1007/s12274-012-0240-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-012-0240-3

Keywords

Navigation