Skip to main content
Log in

Controlled synthesis and multifunctional properties of FePt-Au heterostructures

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In this work, FePt-Au heterostructured nanocrystals (HNCs) such as tadpole-, dumbbell-, bead-, and necklace-like nanostructures were synthesized by a facile heteroepitaxial growth of Au NCs onto FePt nanorods (NRs). A study of the growth mechanism revealed that the morphology control of the final products can be correlated with the adsorption sites of hydrogen onto the FePt NRs, which can be manipulated by the amount of the forming gas (Ar/7% H2) added. Not only the optical characteristic and magnetic properties of the intrinsic materials were retained in the products, but also the FePt-Au HNCs showed the tunable multifunctional properties resulted from the interactions between Au and FePt. Moreover, for methanol oxidation, the FePt-Au HNCs exhibited enhanced catalytic activity and CO tolerance on the catalyst surface compared to commercial Pt catalysts. It is worth noting that as multifunctional units, the FePt-Au HNCs also possess a heterogeneous surface, which could potentially enable their site-specific functionalization for targeting or imaging purposes in biomedical applications. More interestingly, the catalytic properties of the FePt-Au HNCs also endow this material with application potentials in nanocatalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Zeng, H.; Sun, S. H. Syntheses, properties and potential applications of multicomponent magnetic nanoparticles. Adv. Funct. Mater. 2008, 18, 391–400.

    Article  CAS  Google Scholar 

  2. Daniel, M. C.; Astruc, D. Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 2004, 104, 293–346.

    Article  CAS  Google Scholar 

  3. Gu, H. W.; Zheng, R. K.; Zhang, X. X.; Xu, B. Facile one-pot synthesis of bifunctional heterodimers of nanoparticles: A conjugate of quantum dot and magnetic nanoparticles. J. Am. Chem. Soc. 2004, 126, 5664–5665.

    Article  CAS  Google Scholar 

  4. Gu, H.; Yang, Z.; Gao, J.; Chang, C. K.; Xu, B. Heterodimers of nanoparticles: Formation at a liquid-liquid interface and particle-specific surface modification by functional molecules. J. Am. Chem. Soc. 2005, 127, 34–35.

    Article  CAS  Google Scholar 

  5. Choi, J. P.; Murray, R. W. Electron self-exchange between Au140 +/0 nanoparticles is faster than that between Au38 +/0 in solid-state, mixed-valent films. J. Am. Chem. Soc. 2006, 128, 10496–10502.

    Article  CAS  Google Scholar 

  6. Selvan, S. T.; Patra, P. K.; Ang, C. Y.; Ying, J. Y. Synthesis of silica-coated semiconductor and magnetic quantum dots and their use in the imaging of live cells. Angew. Chem. Int. Ed. 2007, 46, 2448–2452.

    Article  CAS  Google Scholar 

  7. Lin, Y. S.; Wu, S. H.; Hung, Y.; Chou, Y. H.; Chang, C.; Lin, M. L.; Tsai, C. P.; Mou, C. Y. Multifunctional composite nanoparticles: Magnetic, luminescent, and mesoporous. Chem. Mater. 2006, 18, 5170–5172.

    Article  CAS  Google Scholar 

  8. Xu, C.; Xie, J.; Ho, D.; Wang, C.; Kohler, N.; Walsh, E. G.; Morgan, J. R.; Chin, Y. E.; Sun, S. Au-Fe3O4 dumbbell nanoparticles as dual-functional probes. Angew. Chem. Int. Ed. 2008, 47, 173–176.

    Article  CAS  Google Scholar 

  9. Wang, C.; Daimon, H.; Sun, S. H. Dumbbell-like Pt-Fe3O4 nanoparticles and their enhanced catalysis for oxygen reduction reaction. Nano Lett. 2009, 9, 1493–1496.

    Article  CAS  Google Scholar 

  10. Lee, Y. M.; Garcia, M. A.; Huls, N. A. F.; Sun, S. H. Synthetic tuning of the catalytic properties of Au-Fe3O4 nanoparticles. Angew. Chem. Int. Ed. 2010, 49, 1271–1274.

    Article  CAS  Google Scholar 

  11. Cao, Y. W.; Banin, U. Growth and properties of semiconductor core/shell nanocrystals with InAs cores. J. Am. Chem. Soc. 2000, 122, 9692–9702.

    Article  CAS  Google Scholar 

  12. Talapin, D. V.; Rogach, A. L.; Kornowski, A.; Haase, M.; Weller, H. Highly luminescent monodisperse CdSe and CdSe/ZnS nanocrystals synthesized in a hexadecylaminetrioctylphosphine oxide-trioctylphospine mixture. Nano Lett. 2001, 1, 207–211.

    Article  CAS  Google Scholar 

  13. Sobal, N. S.; Hilgendorff, M.; Mohwald, H.; Giersig, M.; Spasova, M.; Radetic, T.; Farle, M. Synthesis and structure of colloidal bimetallic nanocrystals: The non-alloying system Ag/Co. Nano Lett. 2002, 2, 621–624.

    Article  CAS  Google Scholar 

  14. Yu, H.; Chen, M.; Rice, P. M.; Wang, S. X.; White, R. L.; Sun, S. H. Dumbbell-like bifunctional Au-Fe3O4 nanoparticles. Nano Lett. 2005, 5, 379–382.

    Article  CAS  Google Scholar 

  15. Rodriguez-Gonzalez, B.; Burrows, A.; Watanabe, M.; Kiely, C. J.; Liz-Marzan, L. M. Multishell bimetallic AuAg nanoparticles: Synthesis, structure and optical properties. J. Mater. Chem. 2005, 15, 1755–1759.

    Article  CAS  Google Scholar 

  16. Xu, Z. C.; Hou, Y. L.; Sun, S. H. Magnetic core/shell Fe3O4/Au and Fe3O4/Au/Ag nanoparticles with tunable plasmonic properties. J. Am. Chem. Soc. 2007, 129, 8698–8699.

    Article  CAS  Google Scholar 

  17. Park, J. I.; Cheon, J. Synthesis of “solid solution” and “core-shell” type cobalt-platinum magnetic nanoparticles via transmetalation reactions. J. Am. Chem. Soc. 2001, 123, 5743–5746.

    Article  CAS  Google Scholar 

  18. Hirakawa, T.; Kamat, P. V. Charge separation and catalytic activity of Ag@TiO2 core-shell composite clusters under UV-irradiation. J. Am. Chem. Soc. 2005, 127, 3928–3934.

    Article  CAS  Google Scholar 

  19. Dawson, A.; Kamat, P. V. Semiconductor-metal nanocomposites. Photoinduced fusion and photocatalysis of gold-capped TiO2 (TiO2/gold) nanoparticles. J. Phys. Chem. B 2001, 105, 960–966.

    Article  CAS  Google Scholar 

  20. Wang, C.; Yin, H. F.; Dai, S.; Sun, S. H. A general approach to noble metal-metal oxide dumbbell nanoparticles and their catalytic application for CO oxidation. Chem. Mater. 2010, 22, 3277–3282.

    Article  CAS  Google Scholar 

  21. Mokari, T.; Rothenberg, E.; Popov, I.; Costi, R.; Banin, U. Selective growth of metal tips onto semiconductor quantum rods and tetrapods. Science 2004, 304, 1787–1790.

    Article  CAS  Google Scholar 

  22. Saunders, A. E.; Popov, I.; Banin, U. Synthesis of hybrid CdS-Au colloidal nanostructures. J. Phys. Chem. B 2006, 110, 25421–25429.

    Article  CAS  Google Scholar 

  23. Kim, H.; Achermann, M.; Balet, L. P.; Hollingsworth, J. A.; Klimov, V. I. Synthesis and characterization of Co/CdSe core/shell nanocomposites: Bifunctional magnetic-optical nanocrystals. J. Am. Chem. Soc. 2005, 127, 544–546.

    Article  CAS  Google Scholar 

  24. Chakrabortty, S.; Yang, J. A.; Tan, Y. M.; Mishra, N.; Chan, Y. T. Asymmetric dumbbells from selective deposition of metals on seeded semiconductor nanorods. Angew. Chem. Int. Ed. 2010, 49, 2888–2892.

    CAS  Google Scholar 

  25. Dukovic, G.; Merkle, M. G.; Nelson, J. H.; Hughes, S. M.; Alivisatos, A. P. Photodeposition of Pt on colloidal CdS and CdSe/CdS semiconductor nanostructures. Adv. Mater. 2008, 20, 4306–4311.

    Article  CAS  Google Scholar 

  26. Habas, S. E.; Yang, P. D.; Mokari, T. Selective growth of metal and binary metal tips on CdS nanorods. J. Am. Chem. Soc. 2008, 130, 3294–3295.

    Article  CAS  Google Scholar 

  27. He, S. L.; Zhang, H. W.; Delikanli, S.; Qin, Y. L.; Swihart, M. T.; Zeng, H. Bifunctional magneto-optical FePt-CdS hybrid nanoparticles. J. Phys. Chem. C 2009, 113, 87–90.

    Article  CAS  Google Scholar 

  28. Wetz, T.; Soulantica, K.; Talqui, A.; Respaud, M.; Snoeck, E.; Chaudret, B. Hybrid Co-Au nanorods: Controlling Au nucleation and location. Angew. Chem. Int. Ed. 2007, 46, 7079–7081.

    Article  CAS  Google Scholar 

  29. Casavola, M.; Grillo, V.; Carlino, E.; Giannini, C.; Gozzo, F.; Pinel, E. F.; Garcia, M. A.; Manna, L.; Cingolani, R.; Cozzoli, P. D. Topologically controlled growth of magnetic-metal-functionalized semiconductor oxide nanorods. Nano Lett. 2007, 7, 1386–1395.

    Article  CAS  Google Scholar 

  30. Buonsanti, R.; Grillo, V.; Carlino, E.; Giannini, C.; Curri, M. L.; Innocenti, C.; Sangregorio, C.; Achterhold, K.; Parak, F. G.; Agostiano, A.; Cozzoli, P. D. Seeded growth of asymmetric binary nanocrystals made of a semiconductor TiO2 rodlike section and a magnetic gamma-Fe2O3 spherical domain. J. Am. Chem. Soc. 2006, 128, 16953–16970.

    Article  CAS  Google Scholar 

  31. Costi, R.; Saunders, A. E.; Banin, U. Colloidal hybrid nanostructures: A new type of functional materials. Angew. Chem. Int. Ed. 2010, 49, 4878–4897.

    Article  CAS  Google Scholar 

  32. Sun, S. H.; Murray, C. B.; Weller, D.; Folks, L.; Moser, A. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 2000, 287, 1989–1992.

    Article  CAS  Google Scholar 

  33. Zeng, H.; Li, J.; Liu, J. P.; Wang, Z. L.; Sun, S. H. Exchange-coupled nanocomposite magnets by nanoparticle self-assembly. Nature 2002, 420, 395–398.

    Article  CAS  Google Scholar 

  34. Zeng, H.; Li, J.; Wang, Z. L.; Liu, J. P.; Sun, S. H. Bimagnetic core/shell FePt/Fe3O4 nanoparticles. Nano Lett. 2004, 4, 187–190.

    Article  CAS  Google Scholar 

  35. Gu, H.; Ho, P. L.; Tsang, K. W. T.; Yu, C. W.; Xu, B. Using biofunctional magnetic nanoparticles to capture gramnegative bacteria at an ultra-low concentration. Chem. Commun. 2003, 1966–1967.

  36. Gu, H.; Ho, P. L.; Tsang, K. W. T.; Wang, L.; Xu, B. Using biofunctional magnetic nanoparticles to capture vancomycin-resistant enterococci and other gram-positive bacteria at ultralow concentration. J. Am. Chem. Soc. 2003, 125, 15702–15703.

    Article  CAS  Google Scholar 

  37. Xu, C. J.; Xu, K. M.; Gu, H. W.; Zhong, X. F.; Guo, Z. H.; Zheng, R. K.; Zhang, X. X.; Xu, B. Nitrilotriacetic acid-modified magnetic nanoparticles as a general agent to bind histidine-tagged proteins. J. Am. Chem. Soc. 2004, 126, 3392–3393.

    Article  CAS  Google Scholar 

  38. Shevchenko, E. V.; Ringler, M.; Schwemer, A.; Talapin, D. V.; Klar, T. A.; Rogach, A. L.; Feldmann, J.; Alivisatos, A. P. Self-assembled binary superlattices of CdSe and Au nanocrystals and their fluorescence properties. J. Am. Chem. Soc. 2008, 130, 3274–3275.

    Article  CAS  Google Scholar 

  39. Shevchenko, E. V.; Talapin, D. V.; Kotov, N. A.; O’Brien, S.; Murray, C. B. Structural diversity in binary nanoparticle superlattices. Nature 2006, 439, 55–59.

    Article  CAS  Google Scholar 

  40. Shevchenko, E. V.; Talapin, D. V.; Murray, C. B.; O’Brien, S. Structural characterization of self-assembled multifunctional binary nanoparticle superlattices. J. Am. Chem. Soc. 2006, 128, 3620–3637.

    Article  CAS  Google Scholar 

  41. Choi, J. S.; Jun, Y. W.; Yeon, S. I.; Kim, H. C.; Shin, J. S.; Cheon, J. Biocompatible heterostructured nanoparticles for multimodal biological detection. J. Am. Chem. Soc. 2006, 128, 15982–15983.

    Article  CAS  Google Scholar 

  42. Wang, C.; Hou, Y. L.; Kim, J. M.; Sun, S. H. A general strategy for synthesizing FePt nanowires and nanorods. Angew. Chem. Int. Ed. 2007, 46, 6333–6335.

    Article  CAS  Google Scholar 

  43. Wang, C.; Hu, Y. J.; Lieber, C. M.; Sun, S. H. Ultrathin Au nanowires and their transport properties. J. Am. Chem. Soc. 2008, 130, 8902–8903.

    Article  CAS  Google Scholar 

  44. Huo, Z. Y.; Tsung, C. K.; Huang, W. Y.; Zhang, X. F.; Yang, P. D. Sub-two nanometer single crystal Au nanowires. Nano Lett. 2008, 8, 2041–2044.

    Article  CAS  Google Scholar 

  45. Mokari, T.; Sztrum, C. G.; Salant, A.; Rabani, E.; Banin, U. Formation of asymmetric one-sided metal-tipped semiconductor nanocrystal dots and rods. Nat. Mater. 2005, 4, 855–863.

    Article  CAS  Google Scholar 

  46. Menagen, G.; Mocatta, D.; Salant, A.; Popov, I.; Dorfs, D.; Banin, U. Selective gold growth on CdSe seeded CdS nanorods. Chem. Mater. 2008, 20, 6900–6902.

    Article  CAS  Google Scholar 

  47. Wang, Y.; Toshima, N. Preparation of Pd-Pt bimetallic colloids with controllable core/shell structures. J. Phys. Chem. B 1997, 101, 5301–5306.

    Article  CAS  Google Scholar 

  48. Palermo, A.; Williams, F. J.; Lambert, R. M. In situ control of the composition and performance of a bimetallic alloy catalyst: The selective hydrogenation of acetylene over Pt/Pb. J. Phys. Chem. B 2002, 106, 10215–10219.

    Article  CAS  Google Scholar 

  49. Oudenhuijzen, M. K.; Bitter, J. H.; Koningsberger, D. C. The nature of the Pt-H bonding for strongly and weakly bonded hydrogen on platinum. A XAFS spectroscopy study of the Pt-H antibonding shape resonance and Pt-H EXAFS. J. Phys. Chem. B 2001, 105, 4616–4622.

    Article  CAS  Google Scholar 

  50. Hickey, B. J.; Howson, M. A.; Greig, D.; Wiser, N. Enhanced magnetic anisotropy energy density for superparamagnetic particles of cobalt. Phys. Rev. B 1996, 53, 32–33.

    Article  CAS  Google Scholar 

  51. Yang, H. Z.; Zhang, J.; Sun, K.; Zou, S. Z.; Fang, J. Y. Enhancing by weakening: Electrooxidation of methanol on Pt3Co and Pt nanocubes. Angew. Chem. Int. Ed. 2010, 49, 6848–6851.

    Article  CAS  Google Scholar 

  52. Xu, Z. C.; Carlton, C. E.; Allard, L. F.; Shao-Horn, Y.; Hamad-Schifferli, K. Direct colloidal route for Pt-covered AuPt bimetallic nanoparticles. J. Phys. Chem. Lett. 2010, 1, 2514–2518.

    Article  CAS  Google Scholar 

  53. Xu, D.; Liu, Z. P.; Yang, H. Z.; Liu, Q. S.; Zhang, J.; Fang, J. Y.; Zou, S. Z.; Sun, K. Solution-based evolution and enhanced methanol oxidation activity of monodisperse platinum-copper nanocubes. Angew. Chem. Int. Ed. 2009, 48, 4217–4221.

    Article  CAS  Google Scholar 

  54. Antolini, E.; Salgado, J. R. C.; Gonzalez, E. R. The methanol oxidation reaction on platinum alloys with the first row transition metals—The case of Pt-Co and -Ni alloy electrocatalysts for DMFCs: A short review. Appl. Catal. B-Environ. 2006, 63, 137–149.

    Article  CAS  Google Scholar 

  55. Tong, Y. Y.; Kim, H. S.; Babu, P. K.; Waszczuk, P.; Wieckowski, A.; Oldfield, E. An NMR investigation of CO tolerance in a Pt/Ru fuel cell catalyst. J. Am. Chem. Soc. 2002, 124, 468–473.

    Article  CAS  Google Scholar 

  56. Watanabe, M.; Tsurumi, K.; Mizukami, T.; Nakamura, T.; Stonehart, P. Activity and stability of ordered and disordered Co-Pt alloys for phosphoric-acid fuel-cells. J. Electrochem. Soc. 1994, 141, 2659–2668.

    Article  CAS  Google Scholar 

  57. Lu, Y. C.; Xu, Z. C.; Gasteiger, H. A.; Chen, S.; Hamad-Schifferli, K.; Shao-Horn, Y. Platinum-gold nanoparticles: A highly active bifunctional electrocatalyst for rechargeable lithium-air batteries. J. Am. Chem. Soc. 2010, 132, 12170–12171.

    Article  CAS  Google Scholar 

  58. He, W. W.; Wu, X. C.; Liu, J. B.; Zhang, K.; Chu, W. G.; Feng, L. L.; Hu, X. A.; Zbou, W. Y.; Me, S. S. Pt-guided formation of Pt-Ag alloy nanoislands on Au nanorods and improved methanol electro-oxidation. J. Phys. Chem. C 2009, 113, 10505–10510.

    Article  CAS  Google Scholar 

  59. Jia, J. B.; Cao, L. Y.; Wang, Z. H. Platinum-coated gold nanoporous film surface: Electrodeposition and enhanced electrocatalytic activity for methanol oxidation. Langmuir 2008, 24, 5932–5936.

    Article  CAS  Google Scholar 

  60. Jena, B. K.; Raj, C. R. Synthesis of flower-like gold nanoparticles and their electrocatalytic activity towards the oxidation of methanol and the reduction of oxygen. Langmuir 2007, 23, 4064–4070.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanglong Hou or Song Gao.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, J., Hou, Y. & Gao, S. Controlled synthesis and multifunctional properties of FePt-Au heterostructures. Nano Res. 4, 836–848 (2011). https://doi.org/10.1007/s12274-011-0140-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-011-0140-y

Keywords

Navigation