Skip to main content
Log in

Nanoseparation-inspired manipulation of the synthesis of CdS nanorods

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

CdS nanorods have been sorted by length using a density gradient ultracentrifuge rate separation method. The fractions containing longer rods showed relatively stronger oxygen-related surface trap emission, while the shorter ones had dominant band-edge emission. These results suggest that the final length distribution of CdS nanorods is not a result of random nucleation and growth, but is related to the local synthesis conditions. Inspired by these findings, different synthesis environments (N2, air, and O2) have been employed in order to tailor the length distribution. In addition to the rod length, the photoluminescence properties of CdS nanorods can also be manipulated. Increasing the oxygen partial pressure significantly changed the growth behavior of CdS nanorods by improving the anisotropic growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fu, A.; Gu, W. W.; Larabel, C.; Alivisatos, A. P. Semiconductor nanocrystals for biological imaging. Curr. Opin. Neurobiol. 2005, 15, 568–575.

    Article  CAS  Google Scholar 

  2. Huynh, W. U.; Dittmer, J. J.; Alivisatos, A. P. Hybrid nanorod-polymer solar cells. Science. 2002, 295, 2425–2427.

    Article  CAS  Google Scholar 

  3. Yu, W. W.; Peng, X. G. Formation of high-quality CdS and other II–VI semiconductor nanocrystals in noncoordinating solvents: Tunable reactivity of monomers. Angew. Chem. Int. Ed. 2002, 41, 2368–2371.

    Article  CAS  Google Scholar 

  4. Peng, Z. A.; Peng, X. G. Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J. Am. Chem. Soc. 2001, 123, 183–184.

    Article  CAS  Google Scholar 

  5. Chen, W.; Chen, K. B.; Peng, Q.; Li, Y. D. Triangular CdS nanocrystals: Rational solvothermal synthesis and optical studies. Small 2009, 5, 681–684.

    Article  CAS  Google Scholar 

  6. Zhuang, Z. B.; Lu, X. T.; Peng, Q.; Li, Y. D. Direct synthesis of water-soluble ultrathin CdS nanorods and reversible tuning of the solubility by alkalinity. J. Am. Chem. Soc. 2010, 132, 1819–1821.

    Article  CAS  Google Scholar 

  7. Joo, J.; Na, H. B.; Yu, T.; Yu, J. H.; Kim, Y. W.; Wu, F.; Zhang, J. Z.; Hyeon, T. Generalized and facile synthesis of semiconducting metal sulfide nanocrystals. J. Am. Chem. Soc. 2003, 125, 11100–11105.

    Article  CAS  Google Scholar 

  8. Goesmann, H.; Feldmann, C. Nanoparticulate functional materials. Angew. Chem. Int. Ed. 2010, 49, 1362–1395.

    CAS  Google Scholar 

  9. Cao, Y. C.; Wang, J. H. One-pot synthesis of high-quality zinc-blende CdS nanocrystals. J. Am. Chem. Soc. 2004, 126, 14336–14337.

    Article  CAS  Google Scholar 

  10. Park, J.; An, K.; Hwang, Y.; Park, J. -G.; Noh, H. -J.; Kim, J. -Y.; Park, J. -H.; Hwang, N. -M.; Hyeon, T. Ultra-large-scale syntheses of monodisperse nanocrystals. Nat. Mater. 2004, 3, 891–895.

    Article  CAS  Google Scholar 

  11. Murray, C. B.; Noms, D. J.; Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites. J. Am. Chem. Soc. 1993, 115, 8706–8715.

    Article  CAS  Google Scholar 

  12. Talapin, D. V.; Lee, J. -S.; Kovalenko, M. V.; Shevchenko, E. V. Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem. Rev. 2010, 110, 389–458.

    Article  CAS  Google Scholar 

  13. Wang, D. S.; Xie, T.; Li, Y. D. Nanocrystals: Solution-based synthesis and applications as nanocatalysts. Nano Res. 2009, 2, 30–46.

    Article  CAS  Google Scholar 

  14. Hu, J.; Li, L. S.; Yang, W.; Manna, L.; Wang, L. W.; Alivisatos, A. P. Linearly polarized emission from colloidal semiconductor quantum rods. Science 2001, 292, 2060–2063.

    Article  CAS  Google Scholar 

  15. Peng, X.; Manna, L.; Yang, W.; Wickham, J.; Scher, E.; Kadavanich, A.; Alivisatos, A. P. Shape control of CdSe nanocrystals. Nature 2000, 404, 59–61.

    Article  CAS  Google Scholar 

  16. Li, L. S.; Hu, J. T.; Yang, W. D.; Alivisatos, A. P. Band gap variation of size- and shape-controlled colloidal CdSe quantum rods. Nano Lett. 2001, 1, 349–351.

    Article  CAS  Google Scholar 

  17. Li, Y. D.; Wang, Z. Y.; Ding, Y. Room temperature synthesis of metal chalcogenides in ethylenediamine. Inorg. Chem. 1999, 38, 4737–4740.

    Article  CAS  Google Scholar 

  18. Li, Y. D.; Liao, H. W.; Ding, Y.; Qian, Y.T.; Yang, L.; Zhou, G. E. Nonaqueous synthesis of CdS nanorod semiconductor. Chem. Mater. 1998, 10, 2301–2303.

    Article  CAS  Google Scholar 

  19. Li, P.; Wang, L. Y.; Wang, L.; Li, Y. D. Controlled synthesis and luminescence of semiconductor nanorods. Chem. Eur. J. 2008, 14, 5951–5956.

    Article  CAS  Google Scholar 

  20. Chu, H. B.; Li, X. M.; Chen, G. D.; Zhou, W. W.; Zhang, Y.; Jin, Z.; Xu, J. J.; Li, Y. Shape-controlled synthesis of CdS nanocrystals in mixed solvents. Cryst. Growth. Des. 2005, 5, 1801–1806.

    Article  CAS  Google Scholar 

  21. Voitekhovich, S. V.; Talapin, D. V.; Klinke, C.; Kornowski, A.; Weller, H. CdS nanoparticles capped with 1-substituted 5-thiotetrazoles: Synthesis, characterization, and thermolysis of the surfactant. Chem. Mater. 2008, 20, 4545–4547.

    Article  CAS  Google Scholar 

  22. Zhang, H. W.; Delikanli, S.; Qin, Y. L.; He, S. L.; Swihart, M.; Zeng, H. Synthesis of monodisperse CdS nanorods catalyzed by Au nanoparticles. Nano Res. 2008, 1, 314–320.

    Article  CAS  Google Scholar 

  23. Wang, F. D.; Tang, R.; Buhro, W. E. The trouble with TOPO: Identification of adventitious impurities beneficial to the growth of cadmium selenide quantum dots, rods, and wires. Nano Lett. 2008, 8, 3521–3524.

    Article  CAS  Google Scholar 

  24. Brakke, M. K. Density gradient centrifugation: A new separation technique. J. Am. Chem. Soc. 1951, 73, 1847–1848.

    Article  CAS  Google Scholar 

  25. Sun, X. M.; Zaric, S.; Daranciang, D.; Welsher, K.; Lu, Y. R.; Li, X. L.; Dai, H. J. Optical properties of ultrashort semiconducting single-walled carbon nanotube capsules down to sub-10 nm. J. Am. Chem. Soc. 2008, 130, 6551–6555.

    Article  CAS  Google Scholar 

  26. Sun, X. M.; Tabakman, S. M.; Seo, W. -S.; Zhang, L.; Zhang, G.; Sherlock, S.; Bai, L.; Dai, H. Separation of nanoparticles in a density gradient: FeCo@C and gold nanocrystals. Angew. Chem. Int. Ed. 2009, 48, 939–942.

    Article  CAS  Google Scholar 

  27. Sun, X. M.; Liu, Z.; Welsher, K.; Robinson, J. T.; Goodwin, A.; Zaric, S.; Dai, H. Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. 2008, 1, 203–212.

    Article  CAS  Google Scholar 

  28. Sun, X. M.; Luo, D. C.; Liu, J. F.; Evans, D. G. Monodisperse chemically modified graphene obtained by density gradient ultracentrifugal rate separation. ACS Nano. 2010, 4, 3381–3389.

    Article  CAS  Google Scholar 

  29. Fagan, J. A.; Becker, M. L.; Chun, J.; Hobbie, E. K. Length fractionation of carbon nanotubes using centrifugation. Adv. Mater. 2008, 20, 1609–1613.

    Article  CAS  Google Scholar 

  30. Chen, G.; Wang, Y.; Tan, L. H.; Yang, M.; Tan, L. S.; Chen, Y.; Chen, H. High-purity separation of gold nanoparticle dimers and trimers. J. Am. Chem. Soc. 2009, 131, 4218–4219.

    Article  CAS  Google Scholar 

  31. Bai, L.; Ma, X. J.; Liu, J. F.; Sun, X. M.; Zhao, D. Y.; Evans, D. G. Rapid separation and purification of nanoparticles in organic density gradients. J. Am. Chem. Soc. 2010, 132, 2333–2337.

    Article  CAS  Google Scholar 

  32. Price, C. A. Centrifugation in density gradients; Academic Press: New York, 1982.

    Google Scholar 

  33. Talapin, D. V.; Nelson, J. H.; Shevchenko, E. V.; Aloni, S.; Sadtler, B.; Alivisatos, A. P. Seeded growth of highly luminescent CdSe/CdS nanoheterostructures with rod and tetrapod morphologies. Nano Lett. 2007, 7, 2951–2959.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoming Sun.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, X., Ma, X., Bai, L. et al. Nanoseparation-inspired manipulation of the synthesis of CdS nanorods. Nano Res. 4, 226–232 (2011). https://doi.org/10.1007/s12274-010-0073-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-010-0073-x

Keywords

Navigation