Skip to main content
Log in

The fungus Colletotrichum as a source for bioactive secondary metabolites

  • Review
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Colletotrichum sp. is a widely distributed fungal genus, which is mainly known to cause anthracnose on cereals, legumes, fruit trees, and vegetables. Even though many of the Colletotrichum sp. are plant pathogens, a variety of secondary metabolites with diverse bioactivities have been reported to be produced by this fungus. At least 109 secondary metabolites from the fungus Colletotrichum have been reported to date. They mostly include nitrogen-containing metabolites, sterols, terpenes, pyrones, phenolics, and fatty acids. Herein, the authors review the structurally interesting secondary metabolites produced by Colletotrichum and their biological activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abou-Zaid M, Dumas M, Chauret D, Watson A, Thompson D (1997) C-methyl flavonols from the fungus Colletotrichum dematium f. sp. epilobii. Phytochemistry 45:957–961

    Article  CAS  Google Scholar 

  • Artanti N, Tachibana S, Kardono LB (2014) Effect of media compositions on α-glucosidase inhibitory activity, growth and fatty acid content in mycelium extracts of Colletotrichum sp. TSC13 from Taxus Sumatrana (Miq.) de Laub. Pak J Biol Sci 17:884–890

    Article  CAS  PubMed  Google Scholar 

  • Avramidis N, Kourounakis A, Hadjipetrou L, Senchuk V (1998) Anti-inflammatory and immunomodulating properties of grape melanin. Inhibitory effects on paw edema and adjuvant induced disease. Arzneimittelforschung 48:764–771

    CAS  PubMed  Google Scholar 

  • Balde ES, Andolfi A, Bruyere C, Cimmino A, Lamoral-Theys D, Vurro M, Damme MV, Altomare C, Mathieu V, Kiss R, Evidente A (2010) Investigations of fungal secondary metabolites with potential anticancer activity. J Nat Prod 73:969–971

    Article  CAS  PubMed  Google Scholar 

  • Ballio A, Bottalico A, Buonocore V, Carilli A, Di Vittorio V, Graniti A (1969) Production and isolation of aspergillomarasmin B (lycomarasmic acid) from cultures of Colletotrichum gloeosporioides Penz. (Gloeosporium olivarum Aim.). Phytopathol Mediterr 8:187–196

    CAS  Google Scholar 

  • Borghi SM, Carvalho TT, Staurengo-Ferrari L, Hohmann MSN, Pinge-Filho P, Casagrande R, Verri WA (2013) Vitexin inhibits inflammatory pain in mice by targeting TRPV1, oxidative stress, and cytokines. J Nat Prod 76:1141–1149

    Article  CAS  PubMed  Google Scholar 

  • Bousquet JF, Vegh I, Pouteau-Thouvenot M, Barbier M (1971) Isolement de l’aspergillomarasmine A de cultures de Colletotrichum gloeosporioides Penz., agent pathogène des saules. Ann Phytopathol 3:407–408

    CAS  Google Scholar 

  • Brader G, Compant S, Mitter B, Trognitz F, Sessitsch A (2014) Metabolic potential of endophytic bacteria. Curr Opin Biotechnol 27:30–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao J, Gao L, Chen Y, Sun W, Wang F, Li H, Zhang Y (2017) Citrinal B, natural 11 beta-hydroxysteroid dehydrogennase type 1 inhibitor identified from structure-based virtual screening. Fitoterapia 123:29–34

    Article  CAS  PubMed  Google Scholar 

  • Chamberlain VK, Wain RL (1971) Plant growth-regulating substances. XXXIII. Influence of ring substituents on the plant growth-regulating activity of phenylacetic acid. Annals of Applied Biology 69:65–72

    Article  CAS  Google Scholar 

  • Chapla VM, Zeraik ML, Leptokarydis IH, Silva GH, Bolzani VS, Young MC, Pfenning LH, Araujo AR (2014) Antifungal compounds produced by Colletotrichum gloeosporioides, an endophytic fungus from Michelia champaca. Molecules 19:19243–19252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen G, Dai HF, Sha Y, Pei YH (2011) Two new compounds from the endophytic fungus Colletotrichum sp. L10 of Cephalotaxus hainanensis. J Asian Nat Prod Res 13:1042–1046

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Yong T, Zhang Y, Su J, Jiao C, Xie Y (2017) Anti-tumor and anti-angiogenic ergosterols from Ganoderma lucidum. Front Chem 5:85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen XW, Yang ZD, Sun JH, Song TT, Zhu BY, Zhao ZW (2018) Colletotrichine A, a new sesquiterpenoid from Colletotrichum gloeosporioides GT-7, a fungal endophyte of Uncaria rhynchophylla. Nat Prod Res 32:880–884

    Article  CAS  PubMed  Google Scholar 

  • Chithra S, Jasim B, Sachidanandan P, Jyothis M, Radhakrishnan EK (2014) Piperine production by endophytic fungus Colletotrichum gloeosporioides isolated from Piper nigrum. Phytomedicine 21:534–540

    Article  CAS  PubMed  Google Scholar 

  • Claydon N, Grove JF, Pople M (1979) Insecticidal secondary metabolic products from the entomogenous fungus Fusarium larvarum. J Invertebr Pathol 33:364–367

    Article  CAS  Google Scholar 

  • Cuo F, Herrmann-Gorline S, Klaebe A, Rossignol M, Petitprez M (1993) Monocerin in Exserohilum turcicum isolates from maize and a study of its phytotoxicity. Phytochemistry 34:1265–1270

    Article  CAS  Google Scholar 

  • Ding J, Zhao J, Yang Z, Ma L, Mi Z, Wu Y, Guo J, Zhou J, Li X, Guo Y, Peng Z, Wei T, Yu H, Zhang L, Ge M, Cen S (2017) Microbial natural product alternariol 5-O-methyl ether inhibits HIV-1 integration by blocking nuclear import of the pre-integration complex. Viruses 9:105

    Article  CAS  PubMed Central  Google Scholar 

  • Evidente A, Superchi S, Cimmino A, Mazzeo G, Mugnai L, Rubiales D, Andolfi A, Villegas-Fernandez AM (2011) Regiolone and isosclerone, two enantiomeric phytotoxic naphthalenone pentaketides: computational assignment of absolute configuration and its relationship with phytotoxic activity. Eur J Org Chem 2011:5564–5570

    Article  CAS  Google Scholar 

  • Evidente A, Kornienko A, Cimmino A, Andolfi A, Lefranc F, Mathieu V, Kiss R (2014) Fungal metabolites with anticancer activity. Nat Prod Rep 31:617–627

    Article  CAS  PubMed  Google Scholar 

  • Fofaria NM, Kim SH, Srivastava SK (2014) Piperine causes G1 phase cell cycle arrest and apoptosis in melanoma cells through checkpoint kinase-1 activation. PLoS ONE 9:e94298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friesen TL, Faris JD, Solomon PS, Oliver RP (2008) Host-specific toxins: effectors of necrotrophic pathogenicity. Cell Microbiol 10:1421–1428

    Article  CAS  PubMed  Google Scholar 

  • García-Pajón CM, Collado IG (2003) Secondary metabolites isolated from Colletotrichum species. Nat Prod Rep 20:426–431

    Article  PubMed  Google Scholar 

  • Guimarães DO, Borges WS, Vieira NJ, De Oliveira LF, Da Silva CH, Lopes NP, Dias LG, Durán-Patrón R, Collado IG, Pupo MT (2010) Diketopiperazines produced by endophytic fungi found in association with two Asteraceae species. Phytochemistry 71:1423–1429

    Article  CAS  PubMed  Google Scholar 

  • Gunatilaka AL (2006) Natural products from plant-associated microorganisms: natural products from plant-associated microorganisms: distribution, structural diversity, bioactivity, and implications of their occurrence. J Nat Prod 69:509–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsiao Y, Cheng MJ, Chang HS, Wu MD, Hsieh SY, Liu TW, Lin CH, Yuan GF, Chen IS (2016) Six new metabolites produced by Colletotrichum aotearoa 09F0161, an endophytic fungus isolated from Bredia oldhamii. Nat Prod Res 30:251–258

    Article  CAS  PubMed  Google Scholar 

  • Inoue M, Takenaka H, Tsurushima T, Miyagawa H, Ueno T (1996) Colletofragarones A1 and A2, novel germination self-inhibitors from the fungus Colletotrichum fragariae. Tetrahedron Lett 37:5731–5734

    Article  CAS  Google Scholar 

  • Khamis AA, Ali EM, El-Moneim MAA, Abd-Alhaseeb MM, El-Magd MA, Salim EI (2018) Hesperidin, piperine and bee venom synergistically potentiate the anticancer effect of tamoxifen against breast cancer cells. Biomed Pharmacother 105:1335–1343

    Article  CAS  PubMed  Google Scholar 

  • Kharwar RN, Mishra A, Gond SK, Stierle A, Stierle D (2011) Anticancer compounds derived from fungal endophytes: their importance and future challenges. Nat Prod Rep 28:1208–1228

    Article  CAS  PubMed  Google Scholar 

  • Kimura Y, Gohbara M, Suzuki A (1977) Assignment of 13C-spectrum and biosynthesis of colletotrichin. Tetrahedron Lett 18:4615–4618

    Article  Google Scholar 

  • Kimura Y, Gohbara M, Suzuki A (1978) The biosynthesis of colletotrichins isolated from Colletotrichum nicotianae. Tetrahedron Lett 19:3115–3118

    Article  Google Scholar 

  • Kong P, Zhang L, Guo Y, Lu Y, Lin D (2014) Phillyrin, a natural lignan, attenuates tumor necrosis factor alpha-mediated insulin resistance and lipolytic acceleration in 3T3-L1 adipocytes. Planta Med 80:880–886

    Article  CAS  PubMed  Google Scholar 

  • Kosuge Y, Suzuki A, Tamura S (1974a) Structure of colletochlorin D from Colletotrichum nicotianae. Agric Biol Chem 38:1553–1554

    Article  CAS  Google Scholar 

  • Kosuge Y, Suzuki A, Tamura S (1974b) Structures of colletochlorin C, colletorin A and colletorin C from Colletotrichum nicotianae. Agric Biol Chem 38:1265–1267

    Article  CAS  Google Scholar 

  • Leite B, Nicholson RL (1992) Mycosporine-alanine: A self-inhibitor of germination from the conidial mucilage of Colletotrichum graminicola. Exp Mycol 16:76–86

    Article  CAS  Google Scholar 

  • Li C, Li H, Sun J, Zhang X, Shi J, Xu Z (2016) Production of 7α,15α-diOH-DHEA from dehydroepiandrosterone by Colletotrichum lini ST-1 through integrating glucose-feeding with multi-step substrate addition strategy. Bioprocess Biosyst Eng 39:1259–1266

    Article  CAS  PubMed  Google Scholar 

  • Liu HX, Tan HB, Chen YC, Li SN, Li HH, Zhang WM (2017) Secondary metabolites from the Colletotrichum gloeosporioides A12, an endophytic fungus derived from Aquilaria sinensis. Nat Prod Res. 32:2360–2365. https://doi.org/10.1080/14786419.2017.1410810

    Article  CAS  PubMed  Google Scholar 

  • Lou J, Fu L, Peng Y, Zhou L (2013) Metabolites from Alternaria fungi and their bioactivities. Molecules 18:5891–5935

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu H, Zou WX, Meng JC, Hu J, Tan RX (2000) New bioactive metabolites produced by Colletotrichum sp., an endophytic fungus in Artemisia annua. Plant Sci 151:67–73

    Article  CAS  Google Scholar 

  • MacMillan J, Pryce RJ (1968) The structure of colletodiol, a macrocyclic dilactone from Colletotrichum capsici. Tetrahedron Lett 9(53):5497–5500

    Article  Google Scholar 

  • MacMillan J, Simpson TJ (1973) Fungal products. Part V. The absolute stereochemistry of colletodiol and the structures of related metabolites of Colletotrichum capsici. J Chem Soc Perkin 1:1487–1493

    Article  Google Scholar 

  • Manayi A, Nabavi SM, Setzer WN, Jafari S (2017) Piperine as a potential anti-cancer agent: a review on preclinical studies. Curr Med Chem. 25(37):4918–4928. https://doi.org/10.2174/0929867324666170523120656

    Article  CAS  Google Scholar 

  • Masi M, Cimmino A, Boari A, Tuzi A, Zonno MC, Baroncelli R, Vurro M, Evidente A (2017) Colletochlorins E and F, new phytotoxic tetrasubstituted pyran-2-one and dihydrobenzofuran, isolated from Colletotrichum higginsianum with potential herbicidal activity. J Agric Food Chem 65:1124–1130

    Article  CAS  PubMed  Google Scholar 

  • Matin MM, Bhuiyan MMH, Azad AKMS (2013) Synthesis and antimicrobial evaluation of some n-butyl α- and β-d-glucopyranoside derivatives. RGUHS J Pharm Sci 3:53–59

    Google Scholar 

  • Meyer WL, Lax AR, Templeton GE, Brannon MJ (1983) The structure of gloeosporone, a novel germination self-inhibitor from conidia of Colletotrichum gloeosporioides. Tetrahedron Lett 24:5059–5062

    Article  CAS  Google Scholar 

  • Meyer WL, Schweizer WB, Beck AK, Scheifele W, Seebach D, Schreiber SL, Kelly SE (1987) Revised structure of the fungal germination self-inhibitor gloeosporone. Helv Chim Acta 70:281–291

    Article  CAS  Google Scholar 

  • Ohra J, Morita K, Tsujino Y, Tazaki H, Fujimori T, Goering M, Evans S, Zorner P (1995) Production of the phytotoxic metabolite, ferricrocin, by the fungus Colletotrichum gloeosporioides. Biosci Biotechnol Biochem 59:113–114

    Article  CAS  PubMed  Google Scholar 

  • Otsuka T, Muramatsu Y, Niikura K, Okamoto M, Hino M, Hashimoto S (1999) WF14861, a new cathepsins B and L inhibitor produced by Colletotrichum sp. II. Biological properties. J Antibiot (Tokyo) 52:542–547

    Article  CAS  Google Scholar 

  • Parrow NL, Fleming RE, Minnick MF (2013) Sequestration and scavenging: iron in infection. Infect Immun 81:3503–3514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Putteeraj M, Lim WL, Teoh SL, Yahaya MF (2018) Flavonoids and its neuroprotective effects on brain ischemia and neurodegenerative diseases. Curr Drug Targets 19:1710–1720

    Article  CAS  PubMed  Google Scholar 

  • Reiter B, Pfeifer U, Schwab H, Sessitsch A (2002) Response of endophytic bacterial communities in potato plants to infection with Erwinia carotovora subsp. atroseptica. Appl Environ Microbiol 68:2261–2268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stoessl A, Stothers JB (1986) Colletruncoic acid methyl ester, a unique meroterpenoid from Colletotrichum truncatum. Z Naturforsch 41c:677–680

    Article  Google Scholar 

  • Suzuki A, Gohbara M, Kosuge Y, Tamura S, Ohashi Y, Sasada Y (1976) Structures of colletotrichin and colletotrichin B, phytotoxic metabolites from Colletotrichum nicotianae. Agric Biol Chem 40:2505–2506

    CAS  Google Scholar 

  • Tan RX, Zou WX (2001) Endophytes: a rich source of functional metabolites. Nat Prod Rep 18:448–459

    Article  CAS  PubMed  Google Scholar 

  • Tianpanich K, Prachya S, Wiyakrutta S, Mahidol C, Ruchirawat S, Kittakoop P (2011) Radical scavenging and antioxidant activities of isocoumarins and a phthalide from the endophytic fungus Colletotrichum sp. J Nat Prod 74:79–81

    Article  CAS  PubMed  Google Scholar 

  • Trigos A, Reyna S, Gutierrez ML, Sanchez M (1997) Diketopiperazines from cultures of the fungus Colletotrichum gloesporoides. Nat Prod Lett 11:13–16

    Article  CAS  Google Scholar 

  • Tsuji G, Sugahara T, Fujii I, Mori Y, Ebizuka Y, Shiraishi T, Kubo Y (2003) Evidence for involvement of two naphthol reductases in the first reduction step of melanin biosynthesis pathway of Colletotrichum lagenarium. Mycol Res 107:854–860

    Article  CAS  PubMed  Google Scholar 

  • Tsurushima T, Ueno T, Fukami H, Irie H, Inoue M (1995) Germination self-inhibitors from Colletotrichum gloeosporioides f. sp. jussiaea. Mol Plant Microbe Interact 8:652–657

    Article  CAS  Google Scholar 

  • Wang Y, Yang MH, Wang XB, Li TX, Kong LY (2014) Bioactive metabolites from the endophytic fungus Alternaria alternata. Fitoterapia 99:153–158

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Zhu H, Ma H, Jiang J, Sun W, Cheng L, Zhang G, Zhang Y (2016) Citrinal B, a new secondary metabolite from endophytic fungus Colletotrichum capsici and structure revision of citrinal A. Tetrahedron Lett 57:4250–4253

    Article  CAS  Google Scholar 

  • Wei T, Tian W, Yan H, Shao G, Xie G (2014) Protective effects of phillyrin on H2O2-induced oxidative stress and apoptosis in PC12 cells. Cell Mol Neurobiol 34:1165–1173

    Article  CAS  PubMed  Google Scholar 

  • Zhang HW, Song YC, Tan RX (2006) Biology and chemistry of endophytes. Nat Prod Rep 23:753–771

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Draeger S, Schulz B, Krohn K (2009) Ring B aromatic steroids from an endophytic fungus, Colletotrichum sp. Nat Prod Commun 4:1449–1454

    CAS  PubMed  Google Scholar 

  • Zhang Q, Wei X, Wang J (2012) Phillyrin produced by Colletotrichum gloeosporioides, an endophytic fungus isolated from Forsythia suspensa. Fitoterapia 83:1500–1505

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Wang O, Guo Y, Wang T, Wang S, Li G, Ji B, Deng Q (2016) Effect of increasing doses of linoleic and α-linolenic acids on high-fructose and high-fat diet induced metabolic syndrome in rats. J Agric Food Chem 64:762–772

    Article  CAS  PubMed  Google Scholar 

  • Zhang G, Li D, Chen H, Zhang J, Jin X (2018) Vitexin induces G2/M-phase arrest and apoptosis via Akt/mTOR signaling pathway in human glioblastoma cells. Mol Med Rep 17:4599–4604

    CAS  PubMed  Google Scholar 

  • Zheng L, Wong YS, Shao M, Huang S, Wang F, Chen J (2018) Apoptosis induced by 9,11-dehydroergosterol peroxide from Ganoderma Lucidum mycelium in human malignant melanoma cells is Mcl-1 dependent. Mol Med Rep 18:938–944

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong WT, Wu YC, Xie XX, Zhou X, Wei MM, Soromou LW, Ci XX, Wang DC (2013) Phillyrin attenuates LPS-induced pulmonary inflammation via suppression of MAPK and NF-κB activation in acute lung injury mice. Fitoterapia 90:132–139

    Article  CAS  PubMed  Google Scholar 

  • Zhou SL, Zhou SL, Wang MX, Chen SL (2011) Two compounds from the endophytic Colletotrichum sp. of Ginkgo biloba. Nat Prod Commun 6:1131–1132

    CAS  PubMed  Google Scholar 

  • Zhou Y, Yang B, Jiang Y, Liu Z, Liu Y, Wang X, Kuang H (2015) Studies on cytotoxic activity against HepG-2 cells of naphthoquinones from green walnut husks of Juglans mandshurica maxim. Molecules 20:15572–15588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou WX, Meng JC, Lu H, Chen GX, Shi GX, Zhang TY, Tan RX (2000) Metabolites of Colletotrichum gloeosporioides, an endophytic fungus in Artemisia mongolica. J Nat Prod 63:1529–1530

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF-2018R1A2B6001733 and NRF-2016R1A6A1A03007648) and the center for Women In Science, Engineering and Technology (WISET) grant funded by the Ministry of Science and ICT (MSIT) under the program for returners into R&D (WISET-201700780001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Hee Shim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J.W., Shim, S.H. The fungus Colletotrichum as a source for bioactive secondary metabolites. Arch. Pharm. Res. 42, 735–753 (2019). https://doi.org/10.1007/s12272-019-01142-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-019-01142-z

Keywords

Navigation