Skip to main content
Log in

Rab25 and RCP in cancer progression

  • Review
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Cancer invasion and metastasis is the crucial cause of death for most cancer patients. Endosome recycling of receptors for growth factors and adhesion molecules to the plasma membrane prevents them from degradation at the inside of the lysosome and recapitulates their functions, leading to major causativeness of cancer progression. Rab25 belongs to Rab-GTPase family and implicated in cancer progression in a context-dependent manner. Identified as a binding partner of Rab25, Rab coupling protein (RCP) augments cancer invasion and metastasis. In the present review, we document recent progress in Rab25- and RCP-induced cancer progression. In addition, we raise several questions should be answered for better understanding how endosome recycling by Rab25 and RCP influences cancer progression. Lastly, we update the potential therapeutic armaments to regulate Rab protein-induced endosome recycling for this deadly disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

RCP:

Rab coupling protein

RTK:

Receptor tyrosine kinase

EGFR:

Epidermal growth factor receptor

TGF:

Transforming growth factor

PI3 K:

Phosphoinositide 3-kinase

GEF:

Guanine nucleotide exchange factor

GAP:

GTPase-activating protein

EMT:

Epithelial mesenchymal transition

DNMTs:

DNA methyltransferases

SIRT1:

Sirtuin 1

TNBC:

Triple-negative breast cancer

VEGF:

Vascular endothelial growth factor

CLIC3:

Intracellular channel protein 3

CLIC3:

Chloride intracellular channel protein 3

Rab11-FIP1:

Rab11 family of interacting proteins

RBD:

Rab binding domain

NSCLC:

Non-small cell lung carcinoma

ER:

Estrogen receptor

PA:

Phosphatidic acid

DGK-α:

Diacylglycerol kinase alpha

GOF:

Gain-of-function

MET:

Mesenchymal–epithelial transition

WIP:

WASP-interacting protein

YAP:

Yes-associated protein

RabGGTase:

Rab geranylgeranyl transferase

siRNAs:

Small interfering RNAs

miRNA:

microRNAs

References

  • Agarwal R, Jurisica I, Mills GB, Cheng KW (2009) The emerging role of the RAB25 small GTPase in cancer. Traffic 10:1561–1568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agola JO, Jim PA, Ward HH, Basuray S, Wandinger-Ness A (2011) Rab GTPases as regulators of endocytosis, targets of disease and therapeutic opportunities. Clin Genet 80:305–318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agola JO, Hong L, Surviladze Z, Ursu O, Waller A, Strouse JJ, Simpson DS, Schroeder CE, Oprea TI, Golden JE, Aube J, Buranda T, Sklar LA, Wandinger-Ness A (2012) A competitive nucleotide binding inhibitor: in vitro characterization of Rab7 GTPase inhibition. ACS Chem Biol 7:1095–1108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alonso-Curbelo D, Riveiro-Falkenbach E, Perez-Guijarro E, Cifdaloz M, Karras P, Osterloh L, Megias D, Canon E, Calvo TG, Olmeda D, Gomez-Lopez G, Grana O, Sanchez-Arevalo Lobo VJ, Pisano DG, Wang HW, Ortiz-Romero P, Tormo D, Hoek K, Rodriguez-Peralto JL, Joyce JA, Soengas MS (2014) RAB7 controls melanoma progression by exploiting a lineage-specific wiring of the endolysosomal pathway. Cancer Cell 26:61–76

    Article  CAS  PubMed  Google Scholar 

  • Amornphimoltham P, Rechache K, Thompson J, Masedunskas A, Leelahavanichkul K, Patel V, Molinolo A, Gutkind JS, Weigert R (2013) Rab25 regulates invasion and metastasis in head and neck cancer. Clin Cancer Res 19:1375–1388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balsara BR, Sonoda G, Du Manoir S, Siegfried JM, Gabrielson E, Testa JR (1997) Comparative genomic hybridization analysis detects frequent, often high-level, overrepresentation of DNA sequences at 3q, 5p, 7p, and 8q in human non-small cell lung carcinomas. Cancer Res 57:2116–2120

    CAS  PubMed  Google Scholar 

  • Boucrot E, Ferreira AP, Almeida-Souza L, Debard S, Vallis Y, Howard G, Bertot L, Sauvonnet N, Mcmahon HT (2015) Endophilin marks and controls a clathrin-independent endocytic pathway. Nature 517:460–465

    Article  CAS  PubMed  Google Scholar 

  • Boulay PL, Mitchell L, Turpin J, Huot-Marchand JE, Lavoie C, Sanguin-Gendreau V, Jones L, Mitra S, Livingstone JM, Campbell S, Hallett M, Mills GB, Park M, Chodosh L, Strathdee D, Norman JC, Muller WJ (2016) Rab11-FIP1C is a critical negative regulator in ErbB2-mediated mammary tumor progression. Cancer Res 76:2662–2674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bridgewater RE, Norman JC, Caswell PT (2012) Integrin trafficking at a glance. J Cell Sci 125:3695–3701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao C, Lu C, Xu J, Zhang J, Li M (2013) Expression of Rab25 correlates with the invasion and metastasis of gastric cancer. Chin J Cancer Res 25:192–199

    PubMed  PubMed Central  Google Scholar 

  • Casanova JE, Wang X, Kumar R, Bhartur SG, Navarre J, Woodrum JE, Altschuler Y, Ray GS, Goldenring JR (1999) Association of Rab25 and Rab11a with the apical recycling system of polarized Madin-Darby canine kidney cells. Mol Biol Cell 10:47–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caswell PT, Spence HJ, Parsons M, White DP, Clark K, Cheng KW, Mills GB, Humphries MJ, Messent AJ, Anderson KI, Mccaffrey MW, Ozanne BW, Norman JC (2007) Rab25 associates with alpha5beta1 integrin to promote invasive migration in 3D microenvironments. Dev Cell 13:496–510

    Article  CAS  PubMed  Google Scholar 

  • Caswell PT, Chan M, Lindsay AJ, Mccaffrey MW, Boettiger D, Norman JC (2008) Rab-coupling protein coordinates recycling of alpha5beta1 integrin and EGFR1 to promote cell migration in 3D microenvironments. J Cell Biol 183:143–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caswell PT, Vadrevu S, Norman JC (2009) Integrins: masters and slaves of endocytic transport. Nat Rev Mol Cell Biol 10:843–853

    Article  CAS  PubMed  Google Scholar 

  • Chano T, Avnet S (2018) RAB39A: a Rab small GTPase with a prominent role in cancer stemness. J Biochem 164:9–14

    Article  PubMed  CAS  Google Scholar 

  • Cheng KW, Lahad JP, Kuo WL, Lapuk A, Yamada K, Auersperg N, Liu J, Smith-Mccune K, Lu KH, Fishman D, Gray JW, Mills GB (2004a) The RAB25 small GTPase determines aggressiveness of ovarian and breast cancers. Nat Med 10:1251–1256

    Article  CAS  PubMed  Google Scholar 

  • Cheng KW, Lahad JP, Kuo WL, Lapuk A, Yamada K, Auersperg N, Liu J, Smith-Mccune K, Lu KH, Fishman D, Gray JW, Mills GB (2004b) The RAB25 small GTPase determines aggressiveness of ovarian and breast cancers. Nat Med 10:1251–1256

    Article  CAS  PubMed  Google Scholar 

  • Cheng JM, Ding M, Aribi A, Shah P, Rao K (2006) Loss of RAB25 expression in breast cancer. Int J Cancer 118:2957–2964

    Article  CAS  PubMed  Google Scholar 

  • Cheng JM, Volk L, Janaki DK, Vyakaranam S, Ran S, Rao KA (2010) Tumor suppressor function of Rab25 in triple-negative breast cancer. Int J Cancer 126:2799–2812

    CAS  PubMed  Google Scholar 

  • Cheng KW, Agarwal R, Mitra S, Lee JS, Carey M, Gray JW, Mills GB (2012) Rab25 increases cellular ATP and glycogen stores protecting cancer cells from bioenergetic stress. EMBO Mol Med 4:125–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choe SR, Kim YN, Park CG, Cho KH, Cho DY, Lee HY (2018) RCP induces FAK phosphorylation and ovarian cancer cell invasion with inhibition by curcumin. Exp Mol Med 50:52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chua CE, Tang BL (2015) The role of the small GTPase Rab31 in cancer. J Cell Mol Med 19:1–10

    Article  CAS  PubMed  Google Scholar 

  • Clausen MJ, Melchers LJ, Mastik MF, Slagter-Menkema L, Groen HJ, Laan BF, Van Criekinge W, De Meyer T, Denil S, Van Der Vegt B, Wisman GB, Roodenburg JL, Schuuring E (2016) RAB25 expression is epigenetically downregulated in oral and oropharyngeal squamous cell carcinoma with lymph node metastasis. Epigenetics 11:653–663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coffill CR, Muller PA, Oh HK, Neo SP, Hogue KA, Cheok CF, Vousden KH, Lane DP, Blackstock WP, Gunaratne J (2012) Mutant p53 interactome identifies nardilysin as a p53R273H-specific binding partner that promotes invasion. EMBO Rep 13:638–644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Court H, Ahearn IM, Amoyel M, Bach EA, Philips MR (2017) Regulation of NOTCH signaling by RAB7 and RAB8 requires carboxyl methylation by ICMT. J Cell Biol 216:4165–4182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coxon FP, Helfrich MH, Larijani B, Muzylak M, Dunford JE, Marshall D, Mckinnon AD, Nesbitt SA, Horton MA, Seabra MC, Ebetino FH, Rogers MJ (2001) Identification of a novel phosphonocarboxylate inhibitor of Rab geranylgeranyl transferase that specifically prevents Rab prenylation in osteoclasts and macrophages. J Biol Chem 276:48213–48222

    Article  CAS  PubMed  Google Scholar 

  • Dai Y, Liu Y, Huang D, Yu C, Cai G, Pi L, Ren C, Chen GZ, Tian Y, Zhang X (2012) Increased expression of Rab coupling protein in squamous cell carcinoma of the head and neck and its clinical significance. Oncol Lett 3:1231–1236

    Article  PubMed  PubMed Central  Google Scholar 

  • Deraeve C, Guo Z, Bon RS, Blankenfeldt W, Dilucrezia R, Wolf A, Menninger S, Stigter EA, Wetzel S, Choidas A, Alexandrov K, Waldmann H, Goody RS, Wu YW (2012) Psoromic acid is a selective and covalent Rab-prenylation inhibitor targeting autoinhibited RabGGTase. J Am Chem Soc 134:7384–7391

    Article  CAS  PubMed  Google Scholar 

  • Ding B, Cui B, Gao M, Li Z, Xu C, Fan S, He W (2017) Knockdown of ras-related protein 25 (Rab25) inhibits the in vitro cytotoxicity and in vivo antitumor activity of human glioblastoma multiforme cells. Oncol Res 25:331–340

    Article  PubMed  Google Scholar 

  • Dozynkiewicz MA, Jamieson NB, Macpherson I, Grindlay J, Van Den Berghe PV, Von Thun A, Morton JP, Gourley C, Timpson P, Nixon C, Mckay CJ, Carter R, Strachan D, Anderson K, Sansom OJ, Caswell PT, Norman JC (2012) Rab25 and CLIC3 collaborate to promote integrin recycling from late endosomes/lysosomes and drive cancer progression. Dev Cell 22:131–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edinger AL, Cinalli RM, Thompson CB (2003) Rab7 prevents growth factor-independent survival by inhibiting cell-autonomous nutrient transporter expression. Dev Cell 5:571–582

    Article  CAS  PubMed  Google Scholar 

  • Escoll M, Gargini R, Cuadrado A, Anton IM, Wandosell F (2017) Mutant p53 oncogenic functions in cancer stem cells are regulated by WIP through YAP/TAZ. Oncogene 36:3515–3527

    Article  CAS  PubMed  Google Scholar 

  • Fukui K, Tamura S, Wada A, Kamada Y, Igura T, Kiso S, Hayashi N (2007) Expression of Rab5a in hepatocellular carcinoma: possible involvement in epidermal growth factor signaling. Hepatol Res 37:957–965

    Article  CAS  PubMed  Google Scholar 

  • Geng D, Zhao W, Feng Y, Liu J (2016) Overexpression of Rab25 promotes hepatocellular carcinoma cell proliferation and invasion. Tumour Biol 37:7713–7718

    Article  CAS  PubMed  Google Scholar 

  • Goldenring JR (2013) A central role for vesicle trafficking in epithelial neoplasia: intracellular highways to carcinogenesis. Nat Rev Cancer 13:813–820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldenring JR, Shen KR, Vaughan HD, Modlin IM (1993) Identification of a small GTP-binding protein, Rab25, expressed in the gastrointestinal mucosa, kidney, and lung. J Biol Chem 268:18419–18422

    CAS  PubMed  Google Scholar 

  • Gu Y, Zou YM, Lei D, Huang Y, Li W, Mo Z, Hu Y (2017) Promoter DNA methylation analysis reveals a novel diagnostic CpG-based biomarker and RAB25 hypermethylation in clear cell renel cell carcinoma. Sci Rep 7:14200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guerra F, and Bucci C (2016) Multiple roles of the small GTPase Rab7. Cells 5

  • Gundry C, Marco S, Rainero E, Miller B, Dornier E, Mitchell L, Caswell PT, Campbell AD, Hogeweg A, Sansom OJ, Morton JP, Norman JC (2017) Phosphorylation of Rab-coupling protein by LMTK3 controls Rab14-dependent EphA2 trafficking to promote cell:cell repulsion. Nat Commun 8:14646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hales CM, Griner R, Hobdy-Henderson KC, Dorn MC, Hardy D, Kumar R, Navarre J, Chan EK, Lapierre LA, Goldenring JR (2001) Identification and characterization of a family of Rab11-interacting proteins. J Biol Chem 276:39067–39075

    Article  CAS  PubMed  Google Scholar 

  • Henriksen L, Grandal MV, Knudsen SL, Van Deurs B, Grovdal LM (2013) Internalization mechanisms of the epidermal growth factor receptor after activation with different ligands. PLoS ONE 8:e58148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong L, Guo Y, Basuray S, Agola JO, Romero E, Simpson DS, Schroeder CE, Simons P, Waller A, Garcia M, Carter M, Ursu O, Gouveia K, Golden JE, Aube J, Wandinger-Ness A, Sklar LA (2015) A Pan-GTPase Inhibitor as a Molecular Probe. PLoS ONE 10:e0134317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu C, Chen B, Zhou Y, Shan Y (2017) High expression of Rab25 contributes to malignant phenotypes and biochemical recurrence in patients with prostate cancer after radical prostatectomy. Cancer Cell Int 17:45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hung MC, Yang R, Sun Y (2016) Powering tumor metastasis with recycled fuel. Cancer Cell 30:374–375

    Article  CAS  PubMed  Google Scholar 

  • Hwang MH, Cho KH, Jeong KJ, Park YY, Kim JM, Yu SL, Park CG, Mills GB, Lee HY (2017) RCP induces Slug expression and cancer cell invasion by stabilizing beta1 integrin. Oncogene 36:1102–1111

    Article  CAS  PubMed  Google Scholar 

  • Jacquemet G, Green DM, Bridgewater RE, Von Kriegsheim A, Humphries MJ, Norman JC, Caswell PT (2013) RCP-driven alpha5beta1 recycling suppresses Rac and promotes RhoA activity via the RacGAP1-IQGAP1 complex. J Cell Biol 202:917–935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeong BY, Cho KH, Jeong KJ, Park YY, Kim JM, Rha SY, Park CG, Mills GB, Cheong JH, Lee HY (2018) Rab25 augments cancer cell invasiveness through a beta1 integrin/EGFR/VEGF-A/Snail signaling axis and expression of fascin. Exp Mol Med 50:e435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jian Q, Miao Y, Tang L, Huang M, Yang Y, Ba W, Liu Y, Chi S, Li C (2016) Rab23 promotes squamous cell carcinoma cell migration and invasion via integrin beta1/Rac1 pathway. Oncotarget 7:5342–5352

    PubMed  Google Scholar 

  • Jo U, Park KH, Whang YM, Sung JS, Won NH, Park JK, Kim YH (2014) EGFR endocytosis is a novel therapeutic target in lung cancer with wild-type EGFR. Oncotarget 5:1265–1278

    PubMed  PubMed Central  Google Scholar 

  • Kessler D, Gruen GC, Heider D, Morgner J, Reis H, Schmid KW, Jendrossek V (2012) The action of small GTPases Rab11 and Rab25 in vesicle trafficking during cell migration. Cell Physiol Biochem 29:647–656

    Article  CAS  PubMed  Google Scholar 

  • Kikuchi M, Yamashita K, Waraya M, Minatani N, Ushiku H, Kojo K, Ema A, Kosaka Y, Katoh H, Sengoku N, Enomoto T, Tanino H, Sawanobori M, Watanabe M (2016) Epigenetic regulation of ZEB1-RAB25/ESRP1 axis plays a critical role in phenylbutyrate treatment-resistant breast cancer. Oncotarget 7:1741–1753

    Article  PubMed  Google Scholar 

  • Kiral FR, Kohrs FE, Jin EJ, Hiesinger PR (2018) Rab GTPases and membrane trafficking in neurodegeneration. Curr Biol 28:R471–R486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kou X, Yang Y, Jiang X, Liu H, Sun F, Wang X, Liu L, Lin Z, Jiang L (2017) Vorinostat and Simvastatin have synergistic effects on triple-negative breast cancer cells via abrogating Rab7 prenylation. Eur J Pharmacol 813:161–171

    Article  CAS  PubMed  Google Scholar 

  • Lackner MR, Kindt RM, Carroll PM, Brown K, Cancilla MR, Chen C, De Silva H, Franke Y, Guan B, Heuer T, Hung T, Keegan K, Lee JM, Manne V, O’brien C, Parry D, Perez-Villar JJ, Reddy RK, Xiao H, Zhan H, Cockett M, Plowman G, Fitzgerald K, Costa M, Ross-Macdonald P (2005) Chemical genetics identifies Rab geranylgeranyl transferase as an apoptotic target of farnesyl transferase inhibitors. Cancer Cell 7:325–336

    Article  CAS  PubMed  Google Scholar 

  • Lanzetti L, Di Fiore PP (2017) Behind the scenes: endo/exocytosis in the acquisition of metastatic traits. Cancer Res 77:1813–1817

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Jia Q, Zhang Q, Wan Y (2015) Rab25 upregulation correlates with the proliferation, migration, and invasion of renal cell carcinoma. Biochem Biophys Res Commun 458:745–750

    Article  CAS  PubMed  Google Scholar 

  • Lindsay AJ, Mccaffrey MW (2004) The C2 domains of the class I Rab11 family of interacting proteins target recycling vesicles to the plasma membrane. J Cell Sci 117:4365–4375

    Article  CAS  PubMed  Google Scholar 

  • Lindsay AJ, Hendrick AG, Cantalupo G, Senic-Matuglia F, Goud B, Bucci C, Mccaffrey MW (2002) Rab coupling protein (RCP), a novel Rab4 and Rab11 effector protein. J Biol Chem 277:12190–12199

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Ding G (2014) Rab25 expression predicts poor prognosis in clear cell renal cell carcinoma. Exp Ther Med 8:1055–1058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Zeng C, Bao N, Zhao J, Hu Y, Li C, Chi S (2015) Effect of Rab23 on the proliferation and apoptosis in breast cancer. Oncol Rep 34:1835–1844

    Article  CAS  PubMed  Google Scholar 

  • Ma YF, Yang B, Li J, Zhang T, Guo JT, Chen L, Li M, Chu J, Liang CY, Liu Y (2015) Expression of Ras-related protein 25 predicts chemotherapy resistance and prognosis in advanced non-small cell lung cancer. Genet Mol Res 14:13998–14008

    Article  CAS  PubMed  Google Scholar 

  • Macpherson IR, Rainero E, Mitchell LE, Van Den Berghe PV, Speirs C, Dozynkiewicz MA, Chaudhary S, Kalna G, Edwards J, Timpson P, Norman JC (2014) CLIC3 controls recycling of late endosomal MT1-MMP and dictates invasion and metastasis in breast cancer. J Cell Sci 127:3893–3901

    Article  CAS  PubMed  Google Scholar 

  • Mafakheri S, Chadt A, Al-Hasani H (2018) Regulation of RabGAPs involved in insulin action. Biochem Soc Trans 46:683–690

    Article  CAS  PubMed  Google Scholar 

  • Menard L, Floc’h N, Martin MJ, DaE Cross (2018) Reactivation of mutant-EGFR degradation through clathrin inhibition overcomes resistance to EGFR tyrosine kinase inhibitors. Cancer Res 78:3267–3279

    Article  CAS  PubMed  Google Scholar 

  • Mills GB, Jurisica I, Yarden Y, Norman JC (2009) Genomic amplicons target vesicle recycling in breast cancer. J Clin Invest 119:2123–2127

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mitra S, Cheng KW, Mills GB (2012) Rab25 in cancer: a brief update. Biochem Soc Trans 40:1404–1408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitra S, Federico L, Zhao W, Dennison J, Sarkar TR, Zhang F, Takiar V, Cheng KW, Mani S, Lee JS, Mills GB (2016) Rab25 acts as an oncogene in luminal B breast cancer and is causally associated with Snail driven EMT. Oncotarget 7:40252–40265

    PubMed  PubMed Central  Google Scholar 

  • Mitra S, Montgomery JE, Kolar MJ, Li G, Jeong KJ, Peng B, Verdine GL, Mills GB, Moellering RE (2017) Stapled peptide inhibitors of RAB25 target context-specific phenotypes in cancer. Nat Commun 8:660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mor O, Nativ O, Stein A, Novak L, Lehavi D, Shiboleth Y, Rozen A, Berent E, Brodsky L, Feinstein E, Rahav A, Morag K, Rothenstein D, Persi N, Mor Y, Skaliter R, Regev A (2003) Molecular analysis of transitional cell carcinoma using cDNA microarray. Oncogene 22:7702–7710

    Article  CAS  PubMed  Google Scholar 

  • Muller PA, Caswell PT, Doyle B, Iwanicki MP, Tan EH, Karim S, Lukashchuk N, Gillespie DA, Ludwig RL, Gosselin P, Cromer A, Brugge JS, Sansom OJ, Norman JC, Vousden KH (2009) Mutant p53 drives invasion by promoting integrin recycling. Cell 139:1327–1341

    Article  PubMed  Google Scholar 

  • Muller PA, Trinidad AG, Timpson P, Morton JP, Zanivan S, Van Den Berghe PV, Nixon C, Karim SA, Caswell PT, Noll JE, Coffill CR, Lane DP, Sansom OJ, Neilsen PM, Norman JC, Vousden KH (2013) Mutant p53 enhances MET trafficking and signalling to drive cell scattering and invasion. Oncogene 32:1252–1265

    Article  CAS  PubMed  Google Scholar 

  • Nam KT, Lee HJ, Smith JJ, Lapierre LA, Kamath VP, Chen X, Aronow BJ, Yeatman TJ, Bhartur SG, Calhoun BC, Condie B, Manley NR, Beauchamp RD, Coffey RJ, Goldenring JR (2010) Loss of Rab25 promotes the development of intestinal neoplasia in mice and is associated with human colorectal adenocarcinomas. J Clin Invest 120:840–849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Natrajan R, Williams RD, Hing SN, Mackay A, Reis-Filho JS, Fenwick K, Iravani M, Valgeirsson H, Grigoriadis A, Langford CF, Dovey O, Gregory SG, Weber BL, Ashworth A, Grundy PE, Pritchard-Jones K, Jones C (2006) Array CGH profiling of favourable histology Wilms tumours reveals novel gains and losses associated with relapse. J Pathol 210:49–58

    Article  CAS  PubMed  Google Scholar 

  • Paul NR, Allen JL, Chapman A, Morlan-Mairal M, Zindy E, Jacquemet G, Fernandez Del Ama L, Ferizovic N, Green DM, Howe JD, Ehler E, Hurlstone A, Caswell PT (2015) alpha5beta1 integrin recycling promotes Arp2/3-independent cancer cell invasion via the formin FHOD3. J Cell Biol 210:1013–1031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prekeris R, Klumperman J, Scheller RH (2000) A Rab11/Rip11 protein complex regulates apical membrane trafficking via recycling endosomes. Mol Cell 6:1437–1448

    Article  CAS  PubMed  Google Scholar 

  • Qin X, Wang J, Wang X, Liu F, Jiang B, Zhang Y (2017) Targeting Rabs as a novel therapeutic strategy for cancer therapy. Drug Discov Today 22:1139–1147

    Article  CAS  PubMed  Google Scholar 

  • Rainero E, Norman JC (2013) Late endosomal and lysosomal trafficking during integrin-mediated cell migration and invasion: cell matrix receptors are trafficked through the late endosomal pathway in a way that dictates how cells migrate. BioEssays 35:523–532

    Article  CAS  PubMed  Google Scholar 

  • Rainero E, Caswell PT, Muller PA, Grindlay J, Mccaffrey MW, Zhang Q, Wakelam MJ, Vousden KH, Graziani A, Norman JC (2012) Diacylglycerol kinase alpha controls RCP-dependent integrin trafficking to promote invasive migration. J Cell Biol 196:277–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roche J, Nasarre P, Gemmill R, Baldys A, Pontis J, Korch C, Guilhot J, Ait-Si-Ali S, Drabkin H (2013) Global decrease of histone H3K27 acetylation in ZEB1-induced epithelial to mesenchymal transition in lung cancer cells. Cancers 5:334–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi F, Sottile J (2008) Caveolin-1-dependent beta1 integrin endocytosis is a critical regulator of fibronectin turnover. J Cell Sci 121:2360–2371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shinde SR, Maddika S (2016) PTEN modulates EGFR late endocytic trafficking and degradation by dephosphorylating Rab7. Nat Commun 7:10689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sigismund S, Argenzio E, Tosoni D, Cavallaro E, Polo S, Di Fiore PP (2008) Clathrin-mediated internalization is essential for sustained EGFR signaling but dispensable for degradation. Dev Cell 15:209–219

    Article  CAS  PubMed  Google Scholar 

  • Skrypek N, Bruneel K, Vandewalle C, De Smedt E, Soen B, Loret N, Taminau J, Goossens S, Vandamme N, Berx G (2018) ZEB2 stably represses RAB25 expression through epigenetic regulation by SIRT1 and DNMTs during epithelial-to-mesenchymal transition. Epigenetics Chromatin 11:70

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Steffan JJ, Cardelli JA (2010) Thiazolidinediones induce Rab7-RILP-MAPK-dependent juxtanuclear lysosome aggregation and reduce tumor cell invasion. Traffic 11:274–286

    Article  CAS  PubMed  Google Scholar 

  • Steffan JJ, Dykes SS, Coleman DT, Adams LK, Rogers D, Carroll JL, Williams BJ, Cardelli JA (2014) Supporting a role for the GTPase Rab7 in prostate cancer progression. PLoS ONE 9:e87882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suwandittakul N, Reamtong O, Molee P, Maneewatchararangsri S, Sutherat M, Chaisri U, Wongkham S, Adisakwattana P (2017) Disruption of endocytic trafficking protein Rab7 impairs invasiveness of cholangiocarcinoma cells. Cancer Biomark 20:255–266

    Article  CAS  PubMed  Google Scholar 

  • Tang BL (2010) Is Rab25 a tumor promoter or suppressor–context dependency on RCP status? Tumour Biol 31:359–361

    Article  CAS  PubMed  Google Scholar 

  • Tang CT, Liang Q, Yang L, Lin XL, Wu S, Chen Y, Zhang XT, Gao YJ, Gezz (2018) RAB31 targeted by MiR-30c-2-3p regulates the GLI1 signaling pathway, affecting gastric cancer cell proliferation and apoptosis. Front Oncol 8:554

    Article  PubMed  PubMed Central  Google Scholar 

  • Tomas A, Futter CE, Eden ER (2014) EGF receptor trafficking: consequences for signaling and cancer. Trends Cell Biol 24:26–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tong M, Chan KW, Bao JY, Wong KY, Chen JN, Kwan PS, Tang KH, Fu L, Qin YR, Lok S, Guan XY, Ma S (2012) Rab25 is a tumor suppressor gene with antiangiogenic and anti-invasive activities in esophageal squamous cell carcinoma. Cancer Res 72:6024–6035

    Article  CAS  PubMed  Google Scholar 

  • Tsai CH, Cheng HC, Wang YS, Lin P, Jen J, Kuo IY, Chang YH, Liao PC, Chen RH, Yuan WC, Hsu HS, Yang MH, Hsu MT, Wu CY, Wang YC (2014) Small GTPase Rab37 targets tissue inhibitor of metalloproteinase 1 for exocytosis and thus suppresses tumour metastasis. Nat Commun 5:4804

    Article  CAS  PubMed  Google Scholar 

  • Tzeng HT, Wang YC (2016) Rab-mediated vesicle trafficking in cancer. J Biomed Sci 23:70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tzeng HT, Tsai CH, Yen YT, Cheng HC, Chen YC, Pu SW, Wang YS, Shan YS, Tseng YL, Su WC, Lai WW, Wu LW, Wang YC (2017) Dysregulation of Rab37-mediated cross-talk between cancer cells and endothelial cells via thrombospondin-1 promotes tumor neovasculature and metastasis. Clin Cancer Res 23:2335–2345

    Article  CAS  PubMed  Google Scholar 

  • Wang T, Zhang M, Ma Z, Guo K, Tergaonkar V, Zeng Q, Hong W (2012) A role of Rab7 in stabilizing EGFR-Her2 and in sustaining Akt survival signal. J Cell Physiol 227:2788–2797

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Dong Q, Wang Y (2016) Rab23 is overexpressed in human astrocytoma and promotes cell migration and invasion through regulation of Rac1. Tumour Biol 37:11049–11055

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Hu C, Wu F, He S (2017a) Rab25 GTPase: functional roles in cancer. Oncotarget 8:64591–64599

    PubMed  PubMed Central  Google Scholar 

  • Wang W, Zhang H, Liu S, Kim CK, Xu Y, Hurley LA, Nishikawa R, Nagane M, Hu B, Stegh AH, Cheng SY, Cheng C (2017b) Internalized CD44s splice isoform attenuates EGFR degradation by targeting Rab7A. Proc Natl Acad Sci USA 114:8366–8371

    Article  CAS  PubMed  Google Scholar 

  • Wheeler DB, Zoncu R, Root DE, Sabatini DM, Sawyers CL (2015) Identification of an oncogenic RAB protein. Science 350:211–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams KC, Coppolino MG (2011) Phosphorylation of membrane type 1-matrix metalloproteinase (MT1-MMP) and its vesicle-associated membrane protein 7 (VAMP7)-dependent trafficking facilitate cell invasion and migration. J Biol Chem 286:43405–43416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wrzeszczynski KO, Varadan V, Byrnes J, Lum E, Kamalakaran S, Levine DA, Dimitrova N, Zhang MQ, Lucito R (2011) Identification of tumor suppressors and oncogenes from genomic and epigenetic features in ovarian cancer. PLoS ONE 6:e28503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang PS, Yin PH, Tseng LM, Yang CH, Hsu CY, Lee MY, Horng CF, Chi CW (2011) Rab5A is associated with axillary lymph node metastasis in breast cancer patients. Cancer Sci 102:2172–2178

    Article  CAS  PubMed  Google Scholar 

  • Yin C, Mou Q, Pan X, Zhang G, Li H, Sun Y (2018) MiR-577 suppresses epithelial-mesenchymal transition and metastasis of breast cancer by targeting Rab25. Thorac Cancer 9:472–479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu L, Hui-Chen F, Chen Y, Zou R, Yan S, Chun-Xiang L, Wu-Ru W, Li P (1999) Differential expression of RAB5A in human lung adenocarcinoma cells with different metastasis potential. Clin Exp Metastasis 17:213–219

    Article  CAS  PubMed  Google Scholar 

  • Yu MH, Luo Y, Qin SL, Zhong M (2015) Increased expression of Rab5A predicts metastasis and poor prognosis in colorectal cancer patients. Int J Clin Exp Pathol 8:6974–6980

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Liu X, Datta A, Govindarajan K, Tam WL, Han J, George J, Wong C, Ramnarayanan K, Phua TY, Leong WY, Chan YS, Palanisamy N, Liu ET, Karuturi KM, Lim B, Miller LD (2009) RCP is a human breast cancer-promoting gene with Ras-activating function. J Clin Invest 119:2171–2183

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Wei J, Lu J, Tong Z, Liao B, Yu B, Zheng F, Huang X, Chen Z, Fang Y, Li B, Chen W, Xie D, Luo J (2013) Overexpression of Rab25 contributes to metastasis of bladder cancer through induction of epithelial-mesenchymal transition and activation of Akt/GSK-3beta/Snail signaling. Carcinogenesis 34:2401–2408

    Article  CAS  PubMed  Google Scholar 

  • Zhang D, Lu C, Ai H (2017) Rab5a is overexpressed in oral cancer and promotes invasion through ERK/MMP signaling. Mol Med Rep 16:4569–4576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Wu B, Li JH, Nan G, Jiang JL, Chen ZN (2017) Rab22a enhances CD147 recycling and is required for lung cancer cell migration and invasion. Exp Cell Res 357:9–16

    Article  CAS  PubMed  Google Scholar 

  • Zhu H, Liang Z, Li G (2009) Rabex-5 is a Rab22 effector and mediates a Rab22-Rab5 signaling cascade in endocytosis. Mol Biol Cell 20:4720–4729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant from the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology [NRF-2017R1E1A1A01074091, 2017R1A2B4007361].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hoi Young Lee.

Ethics declarations

Conflict of interest

The authors declare no conflict interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, K.H., Lee, H.Y. Rab25 and RCP in cancer progression. Arch. Pharm. Res. 42, 101–112 (2019). https://doi.org/10.1007/s12272-019-01129-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-019-01129-w

Keywords

Navigation