Skip to main content
Log in

Inhibitory effect of FSLLRY-NH2 on inflammatory responses induced by hydrogen peroxide in HepG2 cells

  • Research Article
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Proteinase activated receptor 2 (PAR2), which is localized in the GI tract, the respiratory system, and the kidney tubules is a G protein-coupled receptor associated with inflammation, metabolism, and disease. The aim of this study was to explore the role of PAR2 in hydrogen peroxide (H2O2)-induced HepG2 cells by using FSLLRY-NH2 a PAR2 antagonist. H2O2 treatment resulted in induction of PAR2 in esophageal, gastric, and liver cells, with the most robust response being in HepG2 cells. Furthermore, this effect was dose-dependent in HepG2 cells. Treatment with H2O2 at concentrations above 400 μM for 24 h also reduced HepG2 cell viability. H2O2 treatment increased both the protein and mRNA levels of IL-1β, IL-8, and TNF-α, as well as those of SAPK/JNK. The increased levels of these pro-inflammatory genes and SAPK/JNK induced by H2O2 were attenuated in a dose-dependent manner when cells were co-treated with H2O2 and FSLLRY-NH2. In summary, the PAR2 antagonist peptide, FSLLRY-NH2, reduces the level of the pro-inflammatory genes IL-8, IL-1β, and TNF-α induced by H2O2, through the SAPK/JNK pathways in HepG2 cells. These data suggest that a PAR2 antagonist could be an anti-inflammatory agent in HepG2 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Amadesi S, Grant AD, Cottrell GS, Vaksman N, Poole DP, Rengurt E, Bunnett NW (2009) Protein kinase D isoforms are expressed in rat and mouse primary sensory neurons and are activated by agonists of protease-activated receptor 2. J Comp Neurol 516:141–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Antalis TM, Bugge TH, Wu QY (2011) Membrane-anchored serine proteases in health and disease. Proteases Health Dis 99:1–50

    Article  CAS  Google Scholar 

  • Barry GD, Le GT, Fairlie DP (2006) Agonists and antagonists of protease activated receptors (PARs). Curr Med Chem 13:243–265

    Article  CAS  PubMed  Google Scholar 

  • Bertog M, Letz B, Kong W, Steinhoff M, Higgins MA, Bielfeld-Ackermann A, Fromter E, Bunnett NW, Korbmacher C (1999) Basolateral proteinase-activated receptor (PAR-2) induces chloride secretion in M-1 mouse renal cortical collecting duct cells. J Physiol 521(Pt 1):3–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blakeney JS, Reid RC, Le GT, Fairlie DP (2007) Nonpeptidic ligands for peptide-activated G protein-coupled receptors. Chem Rev 107:2960–3041

    Article  CAS  PubMed  Google Scholar 

  • Cao W, Harnett KM, Cheng L, Kirber MT, Behar J, Biancani P (2005) H(2)O(2): a mediator of esophagitis-induced damage to calcium-release mechanisms in cat lower esophageal sphincter. Am J Physiol Gastrointest Liver Physiol 288:G1170–G1178

    Article  CAS  PubMed  Google Scholar 

  • Cenac N, Garcia-Villar R, Ferrier L, Larauche M, Vergnolle N, Bunnett NW, Coelho AM, Fioramonti J, Bueno L (2003) Proteinase-activated receptor-2-induced colonic inflammation in mice: possible involvement of afferent neurons, nitric oxide, and paracellular permeability. J Immunol 170:4296–4300

    Article  CAS  PubMed  Google Scholar 

  • Ciallella JR, Saporito M, Lund S, Leist M, Hasseldam H, McGann N, Smith CS, Bozyczko-Coyne D, Flood DG (2005) CEP-11004, an inhibitor of the SAPK/JNK pathway, reduces TNF-alpha release from lipopolysaccharide-treated cells and mice. Eur J Pharmacol 515:179–187

    Article  CAS  PubMed  Google Scholar 

  • Coughlin SR (2000) Thrombin signalling and protease-activated receptors. Nature 407:258–264

    Article  CAS  PubMed  Google Scholar 

  • Cudic M, Fields GB (2009) Extracellular proteases as targets for drug development. Curr Protein Pept Sci 10:297–307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Andrea MR, Derian CK, Santulli RJ, Andrade-Gordon P (2001) Differential expression of protease-activated receptors-1 and -2 in stromal fibroblasts of normal, benign, and malignant human tissues. Am J Pathol 158:2031–2041

    Article  PubMed  PubMed Central  Google Scholar 

  • de Garavilla L, Vergnolle N, Young SH, Ennes H, Steinhoff M, Ossovskaya VS, D’Andrea MR, Mayer EA, Wallace JL, Hollenberg MD, Andrade-Gordon P, Bunnett NW (2001) Agonists of proteinase-activated receptor 1 induce plasma extravasation by a neurogenic mechanism. Br J Pharmacol 133:975–987

    Article  PubMed  PubMed Central  Google Scholar 

  • Fischer S, Wiesnet M, Renz D, Schaper W (2005) H2O2 induces paracellular permeability of porcine brain-derived microvascular endothelial cells by activation of the p44/42 MAP kinase pathway. Eur J Cell Biol 84:687–697

    Article  CAS  PubMed  Google Scholar 

  • Frungieri MB, Weidinger S, Meineke V, Kohn FM, Mayerhofer A (2002) Proliferative action of mast-cell tryptase is mediated by PAR2, COX2, prostaglandins, and PPARgamma: possible relevance to human fibrotic disorders. Proc Natl Acad Sci USA 99:15072–15077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frungieri MB, Albrecht M, Raemsch R, Mayerhofer A (2005) The action of the mast cell product tryptase on cyclooxygenase-2 (COX2) and subsequent fibroblast proliferation involves activation of the extracellular signal-regulated kinase isoforms 1 and 2 (erk1/2). Cell Signal 17:525–533

    Article  CAS  PubMed  Google Scholar 

  • Hansen KK, Sherman PM, Cellars L, Andrade-Gordon P, Pan Z, Baruch A, Wallace JL, Hollenberg MD, Vergnolle N (2005) A major role for proteolytic activity and proteinase-activated receptor-2 in the pathogenesis of infectious colitis. Proc Natl Acad Sci USA 102:8363–8368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heidel KM, Benarroch EE, Gene R, Klein F, Meli F, Saadia D, Nogues MA (2002) Cardiovascular and respiratory consequences of bilateral involvement of the medullary intermediate reticular formation in syringobulbia. Clin Auton Res 12:450–456

    Article  CAS  PubMed  Google Scholar 

  • Hirota CL, Moreau F, Iablokov V, Dicay M, Renaux B, Hollenberg MD, MacNaughton WK (2012) Epidermal growth factor receptor transactivation is required for proteinase-activated receptor-2-induced COX-2 expression in intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol 303:G111–G119

    Article  CAS  PubMed  Google Scholar 

  • Hollenberg MD, Wijesuriya SJ, Gui Y, Loutzenhiser R (2003) Proteinase-activated receptors (PARs) and the kidney. Drug Dev Res 60:36–42

    Article  CAS  Google Scholar 

  • Ilic D, Mao-Qiang M, Crumrine D, Dolganov G, Larocque N, Xu P, Demerjian M, Brown BE, Lim ST, Ossovskaya V, Schlaepfer DD, Fisher SJ, Feingold KR, Elias PM, Mauro TM (2007) Focal adhesion kinase controls pH-dependent epidermal barrier homeostasis by regulating actin-directed Na+/H+ exchanger 1 plasma membrane localization. Am J Pathol 170:2055–2067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawabata A, Kuroda R (2000) Protease-activated receptor (PAR), a novel family of G protein-coupled seven trans-membrane domain receptors: activation mechanisms and physiological roles. Jpn J Pharmacol 82:171–174

    Article  CAS  PubMed  Google Scholar 

  • Kunzelmann K, Sun J, Markovich D, Konig J, Murle B, Mall M, Schreiber R (2005) Control of ion transport in mammalian airways by protease activated receptors type 2 (PAR-2). FASEB J 19:969–970

    CAS  PubMed  Google Scholar 

  • Lau C, Lytle C, Straus DS, DeFea KA (2011) Apical and basolateral pools of proteinase-activated receptor-2 direct distinct signaling events in the intestinal epithelium. Am J Physiol Cell Physiol 300:C113–C123

    Article  CAS  PubMed  Google Scholar 

  • Lohman RJ, Cotterell AJ, Suen J, Liu L, Do AT, Vesey DA, Fairlie DP (2012) Antagonism of protease-activated receptor 2 protects against experimental colitis. J Pharmacol Exp Ther 340:256–265

    Article  CAS  PubMed  Google Scholar 

  • Moussa L, Apostolopoulos J, Davenport P, Tchongue J, Tipping PG (2007) Protease-activated receptor-2 augments experimental crescentic glomerulonephritis. Am J Pathol 171:800–808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nystedt S, Ramakrishnan V, Sundelin J (1996) The proteinase-activated receptor 2 is induced by inflammatory mediators in human endothelial cells—comparison with the thrombin receptor. J Biol Chem 271:14910–14915

    Article  CAS  PubMed  Google Scholar 

  • Olyaee M, Sontag S, Salman W, Schnell T, Mobarhan S, Eiznhamer D, Keshavarzian A (1995) Mucosal reactive oxygen species production in oesophagitis and Barrett’s oesophagus. Gut 37:168–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Riordan JM, Abdel-latif MM, Ravi N, McNamara D, Byrne PJ, McDonald GS, Keeling PW, Kelleher D, Reynolds JV (2005) Proinflammatory cytokine and nuclear factor kappa-B expression along the inflammation-metaplasia-dysplasia-adenocarcinoma sequence in the esophagus. Am J Gastroenterol 100:1257–1264

    Article  PubMed  Google Scholar 

  • Ossovskaya VS, Bunnett NW (2004) Protease-activated receptors: contribution to physiology and disease. Physiol Rev 84:579–621

    Article  CAS  PubMed  Google Scholar 

  • Pejler G, Ronnberg E, Waern I, Wernersson S (2010) Mast cell proteases: multifaceted regulators of inflammatory disease. Blood 115:4981–4990

    Article  CAS  PubMed  Google Scholar 

  • Rai BK, Tawa GJ, Katz AH, Humblet C (2010) Modeling G protein-coupled receptors for structure-based drug discovery using low-frequency normal modes for refinement of homology models: application to H3 antagonists. Proteins Struct Funct Bioinform 78:457–473

    Article  CAS  Google Scholar 

  • Rajagopal S, Rajagopal K, Lefkowitz RJ (2010) Teaching old receptors new tricks: biasing seven-transmembrane receptors. Nat Rev Drug Discov 9:373–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramachandran R, Morice AH, Compton SJ (2006) Proteinase-activated receptor2 agonists upregulate granulocyte colony-stimulating factor, IL-8, and VCAM-1 expression in human bronchial fibroblasts. Am J Respir Cell Mol Biol 35:133–141

    Article  CAS  PubMed  Google Scholar 

  • Rothmeier AS, Ruf W (2012) Protease-activated receptor 2 signaling in inflammation. Semin Immunopathol 34:133–149

    Article  CAS  PubMed  Google Scholar 

  • Shukla AK, Violin JD, Whalen EJ, Gesty-Palmer D, Shenoy SK, Lefkowitz RJ (2008) Distinct conformational changes in beta-arrestin report biased agonism at seven-transmembrane receptors. Proc Natl Acad Sci USA 105:9988–9993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snabaitis AK, Muntendorf A, Wieland T, Avkiran M (2005) Regulation of the extracellular signal-regulated kinase pathway in adult myocardium: differential roles of G(q/11), Gi and G(12/13) proteins in signalling by alpha1-adrenergic, endothelin-1 and thrombin-sensitive protease-activated receptors. Cell Signal 17:655–664

    Article  CAS  PubMed  Google Scholar 

  • Steinhoff M, Buddenkotte J, Shpacovitch V, Rattenholl A, Moormann C, Vergnolle N, Luger TA, Hollenberg MD (2005) Proteinase-activated receptors: transducers of proteinase-mediated signaling in inflammation and immune response. Endocr Rev 26:1–43

    Article  CAS  PubMed  Google Scholar 

  • Suen JY, Barry GD, Lohman RJ, Halili MA, Cotterell AJ, Le GT, Fairlie DP (2012) Modulating human proteinase activated receptor 2 with a novel antagonist (GB88) and agonist (GB110). Br J Pharmacol 165:1413–1423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suen JY, Cotterell A, Lohman RJ, Lim J, Han A, Yau MK, Liu L, Cooper MA, Vesey DA, Fairlie DP (2014) Pathway-selective antagonism of proteinase activated receptor 2. Br J Pharmacol 171:4112–4124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka H, Yoshida T, Miyamoto N, Motoike T, Kurosu H, Shibata K, Yamanaka A, Williams SC, Richardson JA, Tsujino N, Garry MG, Lerner MR, King DS, O’Dowd BF, Sakurai T, Yanagisawa M (2003) Characterization of a family of endogenous neuropeptide ligands for the G protein-coupled receptors GPR7 and GPR8. Proc Natl Acad Sci USA 100:6251–6256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vergnolle N, Wallace JL, Bunnett NW, Hollenberg MD (2001) Protease-activated receptors in inflammation, neuronal signaling and pain. Trends Pharmacol Sci 22:146–152

    Article  CAS  PubMed  Google Scholar 

  • Vesey DA, Suen JY, Seow V, Lohman RJ, Liu L, Gobe GC, Johnson DW, Fairlie DP (2013a) PAR2-induced inflammatory responses in human kidney tubular epithelial cells. Am J Physiol Ren Physiol 304:F737–F750

    Article  CAS  Google Scholar 

  • Vesey DA, Suen JY, Seow V, Lohman RJ, Liu LG, Gobe GC, Johnson DW, Fairlie DP (2013b) PAR2-induced inflammatory responses in human kidney tubular epithelial cells. Am J Physiol Ren Physiol 304:F737–F750

    Article  CAS  Google Scholar 

  • Yoshida N, Imamoto E, Uchiyama K, Kuroda M, Naito Y, Mukaida N, Kawabe A, Shimada Y, Yoshikawa T, Okanoue T (2006) Molecular mechanisms involved in interleukin-8 production by normal human oesophageal epithelial cells. Aliment Pharmacol Ther 24:219–226

    Article  Google Scholar 

Download references

Acknowledgements

Sung Hee Lee aided in part initial writing of manuscript. This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education, Science and Technology [Grant 2016R1D1A1A09918019], and by the Chung-Ang University Graduate Research Scholarship in 2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uy Dong Sohn.

Ethics declarations

Conflicts of interest

The author declares that there are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, Y.J., Kim, S.J., Kwon, K.W. et al. Inhibitory effect of FSLLRY-NH2 on inflammatory responses induced by hydrogen peroxide in HepG2 cells. Arch. Pharm. Res. 40, 854–863 (2017). https://doi.org/10.1007/s12272-017-0927-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-017-0927-9

Keywords

Navigation