Skip to main content
Log in

Cryptotanshinone and wogonin up-regulate eNOS in vascular endothelial cells via ERα and down-regulate iNOS in LPS stimulated vascular smooth muscle cells via ERβ

  • Research Article
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Phytoestrogens were widely used as natural alternatives to estrogen for treating cardiovascular diseases. They have been reported to have cardioprotective and anti-inflammatory response, but the mechanisms remain unclear. In this study, we found cryptotanshinone and wogonin exhibited phytoestrogenic property in an estrogen-responsive reporter assay. In EA.hy926 cells, treatment of cryptotanshinone and wogonin led to significant increase in NO production levels, which were inhibited by co-incubation of estrogen receptor (ER)α antagonist methyl-piperidino-pyrazole (MPP). The expression of endothelial NO synthase (eNOS) and ERα were up-regulated with the same treatment, indicating they stimulate NO and eNOS expression via ERα-dependent pathway in endothelial cells. While in lipopolysaccharide activated vascular smooth muscle cell line A7r5, cryptotanshinone and wogonin exerted anti-inflammatory effects by inhibiting NO and inducible NO synthase expression via ERβ-dependent pathway. The reduction of NO synthesis was not affected by MPP, and was abrogated by ERβ antagonist R,R-tetrahydrochrysene. Our findings provide the potential molecular mechanism of cryptotanshinone and wogonin as phytoestrogens for their cardioprotective effects, which exerted regulatory effects on NO synthesis through differential regulation of estrogen receptors. It can be employed as a basis for evaluating the beneficial effects of phytoestrogens in the treatment of patients at risk of cardiovascular disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Albertazzi P, Purdie DW (2008) The nature and utility of the phytoestrogens: a review of the evidence. Maturitas 61:214–226

    Article  PubMed  Google Scholar 

  • Altavilla D, Crisafulli A, Marini H, Esposito M, D’anna R, Corrado F, Bitto A, Squadrito F (2004) Cardiovascular effects of the phytoestrogen genistein. Curr Med Chem 2:179–186

    CAS  Google Scholar 

  • Arnal JF, Fontaine C, Billon-Gales A, Favre J, Laurell H, Lenfant F, Gourdy P (2010) Estrogen receptors and endothelium. Arterioscler Thromb Vasc Biol 30:1506–1512

    Article  PubMed  CAS  Google Scholar 

  • Atteritano M, Marini H, Minutoli L, Polito F, Bitto A, Altavilla D, Mazzaferro S, D’anna R, Cannata ML, Gaudio A, Frisina A, Frisina N, Corrado F, Cancellieri F, Lubrano C, Bonaiuto M, Adamo EB, Squadrito F (2007) Effects of the phytoestrogen genistein on some predictors of cardiovascular risk in osteopenic, postmenopausal women: a two-year randomized, double-blind, placebo-controlled study. J Clin Endocrinol Metab 92:3068–3075

    Article  PubMed  CAS  Google Scholar 

  • Billon-Gales A, Fontaine C, Filipe C, Douin-Echinard V, Fouque MJ, Flouriot G, Gourdy P, Lenfant F, Laurell H, Krust A, Chambon P, Arnal JF (2009) The transactivating function 1 of estrogen receptor alpha is dispensable for the vasculoprotective actions of 17β-estradiol. Proc Natl Acad Sci USA 106:2053–2058

    Article  PubMed Central  PubMed  Google Scholar 

  • Brouchet L, Krust A, Dupont S, Chambon P, Bayard F, Arnal JF (2001) Estradiol accelerates reendothelialization in mouse carotid artery through estrogen receptor-α but not estrogen receptor-β. Circulation 103:423–428

    Article  PubMed  CAS  Google Scholar 

  • Cai H, Harrison DG (2000) Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res 87:840–844

    Article  PubMed  CAS  Google Scholar 

  • Cassidy A, Hooper L (2006) Phytoestrogens and cardiovascular disease. Br Menopause Soc J 12:49–56

    Article  Google Scholar 

  • Chen Z, Yuhanna IS, Galcheva-Gargova Z, Karas RH, Mendelsohn ME, Shaul PW (1999) Estrogen receptor α mediates the nongenomic activation of endothelial nitric oxide synthase by estrogen. J Clin Investig 103:401–406

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Cignarella A, Minici C, Bolego C, Pinna C, Sanvito P, Gaion RM, Puglisi L (2006) Potential pro-inflammatory action of resveratrol in vascular smooth muscle cells from normal and diabetic rats. Nutr Metab Cardiovasc Dis 16:322–329

    Article  PubMed  CAS  Google Scholar 

  • Clarkson TB (2002) Soy, soy phytoestrogens and cardiovascular disease. J Nutr 132:566S–569S

    PubMed  Google Scholar 

  • Darblade B, Pendaries C, Krust A, Dupont S, Fouque MJ, Rami J, Chambon P, Bayard F, Arnal JF (2002) Estradiol alters nitric oxide production in the mouse aorta through the α-, but not β-, estrogen receptor. Circ Res 90:413–419

    Article  PubMed  CAS  Google Scholar 

  • Forstermann U, Schmidt HH, Pollock JS, Sheng H, Mitchell JA, Warner TD, Nakane M, Murad F (1991) Isoforms of nitric oxide synthase. Characterization and purification from different cell types. Biochem Pharmacol 42:1849–1857

    Article  PubMed  CAS  Google Scholar 

  • Gencel VB, Benjamin MM, Bahou SN, Khalil RA (2012) Vascular effects of phytoestrogens and alternative menopausal hormone therapy in cardiovascular disease. Mini Rev Med Chem 12:149–174

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hisamoto K, Ohmichi M, Kurachi H, Hayakawa J, Kanda Y, Nishio Y, Adachi K, Tasaka K, Miyoshi E, Fujiwara N, Taniguchi N, Murata Y (2001) Estrogen induces the Akt-dependent activation of endothelial nitric-oxide synthase in vascular endothelial cells. J Biol Chem 276:3459–3467

    Article  PubMed  CAS  Google Scholar 

  • Jacquot Y, Rojas C, Refouvelet B, Robert JF, Leclercq G, Xicluna A (2003) Recent advances in the development of phytoestrogens and derivatives: an update of the promising perspectives in the prevention of postmenopausal diseases. Mini Rev Med Chem 3:387–400

    Article  PubMed  CAS  Google Scholar 

  • Knowles RG, Moncada S (1994) Nitric oxide synthases in mammals. Biochem J 298(Pt 2):249–258

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kole L, Giri B, Manna SK, Pal B, Ghosh S (2011) Biochanin-A, an isoflavon, showed anti-proliferative and anti-inflammatory activities through the inhibition of iNOS expression, p38-MAPK and ATF-2 phosphorylation and blocking NFκB nuclear translocation. Eur J Pharmacol 653:8–15

    Article  PubMed  CAS  Google Scholar 

  • Krenn L, Paper DH (2009) Inhibition of angiogenesis and inflammation by an extract of red clover (Trifolium pratense L.). Phytomedicine 16:1083–1088

    Article  PubMed  CAS  Google Scholar 

  • Lee JY, Park W (2015) Anti-inflammatory effect of wogonin on RAW 264.7 mouse macrophages induced with polyinosinic-polycytidylic acid. Molecules 20:6888–6900

    Article  PubMed  CAS  Google Scholar 

  • Marriott LK, Mcgann-Gramling KR, Hauss-Wegrzyniak B, Sheldahl LC, Shapiro RA, Dorsa DM, Wenk GL (2007) Brain infusion of lipopolysaccharide increases uterine growth as a function of estrogen replacement regimen: suppression of uterine estrogen receptor-α by constant, but not pulsed, estrogen replacement. Endocrinology 148:232–240

    Article  PubMed  CAS  Google Scholar 

  • Moncada S, Palmer RM, Higgs EA (1991) Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 43:109–142

    PubMed  CAS  Google Scholar 

  • Morton MS, Arisaka O, Miyake N, Morgan LD, Evans BA (2002) Phytoestrogen concentrations in serum from Japanese men and women over forty years of age. J Nutr 132:3168–3171

    PubMed  CAS  Google Scholar 

  • Mueller M, Hobiger S, Jungbauer A (2010) Red clover extract: a source for substances that activate peroxisome proliferator-activated receptor alpha and ameliorate the cytokine secretion profile of lipopolysaccharide-stimulated macrophages. Menopause 17:379–387

    Article  PubMed  Google Scholar 

  • O’lone R, Knorr K, Jaffe IZ, Schaffer ME, Martini PG, Karas RH, Bienkowska J, Mendelsohn ME, Hansen U (2007) Estrogen receptors alpha and beta mediate distinct pathways of vascular gene expression, including genes involved in mitochondrial electron transport and generation of reactive oxygen species. Mol Endocrinol 21:1281–1296

    Article  PubMed  CAS  Google Scholar 

  • Oliveira-Paula GH, Lacchini R, Tanus-Santos JE (2014) Inducible nitric oxide synthase as a possible target in hypertension. Curr Drug Targets 15:164–174

    Article  PubMed  CAS  Google Scholar 

  • Palmer RM, Ashton DS, Moncada S (1988) Vascular endothelial cells synthesize nitric oxide from l-arginine. Nature 333:664–666

    Article  PubMed  CAS  Google Scholar 

  • Pare G, Krust A, Karas RH, Dupont S, Aronovitz M, Chambon P, Mendelsohn ME (2002) Estrogen receptor-α mediates the protective effects of estrogen against vascular injury. Circ Res 90:1087–1092

    Article  PubMed  CAS  Google Scholar 

  • Pendaries C, Darblade B, Rochaix P, Krust A, Chambon P, Korach KS, Bayard F, Arnal JF (2002) The AF-1 activation-function of ERα may be dispensable to mediate the effect of estradiol on endothelial NO production in mice. Proc Natl Acad Sci USA 99:2205–2210

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Pinna C, Cignarella A, Sanvito P, Pelosi V, Bolego C (2008) Prolonged ovarian hormone deprivation impairs the protective vascular actions of estrogen receptor α agonists. Hypertension 51:1210–1217

    Article  PubMed  CAS  Google Scholar 

  • Rochette L, Lorin J, Zeller M, Guilland JC, Lorgis L, Cottin Y, Vergely C (2013) Nitric oxide synthase inhibition and oxidative stress in cardiovascular diseases: possible therapeutic targets? Pharmacol Ther 140:239–257

    Article  PubMed  CAS  Google Scholar 

  • Shih CD (2009) Activation of estrogen receptor beta-dependent nitric oxide signaling mediates the hypotensive effects of estrogen in the rostral ventrolateral medulla of anesthetized rats. J Biomed Sci 16:60

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Simoncini T, Fornari L, Mannella P, Caruso A, Garibaldi S, Baldacci C, Genazzani AR (2005) Activation of nitric oxide synthesis in human endothelial cells by red clover extracts. Menopause 12:69–77

    Article  PubMed  Google Scholar 

  • Sumi D, Ignarro LJ (2003) Estrogen-related receptor α1 up-regulates endothelial nitric oxide synthase expression. Proc Natl Acad Sci USA 100:14451–14456

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Tang Y, Chen Y, Chu Z, Yan B, Xu L (2014) Protective effect of cryptotanshinone on lipopolysaccharide-induced acute lung injury in mice. Eur J Pharmacol 723:494–500

    Article  PubMed  CAS  Google Scholar 

  • Tham DM, Gardner CD, Haskell WL (1998) Clinical review 97: potential health benefits of dietary phytoestrogens: a review of the clinical, epidemiological, and mechanistic evidence. J Clin Endocrinol Metab 83:2223–2235

    PubMed  CAS  Google Scholar 

  • Wang H, Li M-C, Yang J, Yang D, Su Y-F, Fan G-W, Zhu Y, Gao X-M, Paoletti R (2011) Estrogenic properties of six compounds derived from Eucommia ulmoides Oliv. and their differing biological activity through estrogen receptors α and β. Food Chem 129:408–416

    Article  CAS  Google Scholar 

  • Wang W, Xia T, Yu X (2015) Wogonin suppresses inflammatory response and maintains intestinal barrier function via TLR4-MyD88-TAK1-mediated NF-κB pathway in vitro. Inflamm Res 64:423–431

    Article  PubMed  CAS  Google Scholar 

  • Xin D, Wang H, Yang J, Su YF, Fan GW, Wang YF, Zhu Y, Gao XM (2010) Phytoestrogens from Psoralea corylifolia reveal estrogen receptor-subtype selectivity. Phytomedicine 17:126–131

    Article  PubMed  CAS  Google Scholar 

  • Xiu-Li W, Wen-Jun C, Hui-Hua D, Su-Ping H, Shi-Long F (2009) ERB-041, a selective ER beta agonist, inhibits iNOS production in LPS-activated peritoneal macrophages of endometriosis via suppression of NF-κB activation. Mol Immunol 46:2413–2418

    Article  PubMed  CAS  Google Scholar 

  • Zancan V, Santagati S, Bolego C, Vegeto E, Maggi A, Puglisi L (1999) 17β-estradiol decreases nitric oxide synthase II synthesis in vascular smooth muscle cells. Endocrinology 140:2004–2009

    PubMed  CAS  Google Scholar 

  • Zhou Z, Wang SQ, Liu Y, Miao AD (2006) Cryptotanshinone inhibits endothelin-1 expression and stimulates nitric oxide production in human vascular endothelial cells. Biochim Biophys Acta 1760:1–9

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the financial support from the project supported by the National Natural Science Foundation of China (81173592), Program for New Century Excellent Talents in University of Ministry of Education of China (NCET-13-0935), Program of International S&T Cooperation Project of China (2015DFA30430), “Major drug discovery” National Science and Technology Major Project of the Ministry of Science and Technology of China (2012ZX09101212), the Program for Changjiang Scholars and Innovative Research Team in University, PCSIRT (IRT1276).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Wang.

Ethics declarations

Conflict of Interest

Authors declare that they have no conflict of interest.

Additional information

Barnabas Oche and Lu Chen have contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oche, B., Chen, L., Ma, Yk. et al. Cryptotanshinone and wogonin up-regulate eNOS in vascular endothelial cells via ERα and down-regulate iNOS in LPS stimulated vascular smooth muscle cells via ERβ. Arch. Pharm. Res. 39, 249–258 (2016). https://doi.org/10.1007/s12272-015-0671-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-015-0671-y

Keywords

Navigation