Skip to main content
Log in

ZL-2, a cathelicidin-derived antimicrobial peptide, has a broad antimicrobial activity against gram-positive bacteria and gram-negative bacteria in vitro and in vivo

  • Research Article
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Alloferons are a group of naturally occurring peptides primarily isolated from insects that are capable of stimulating mouse and human NK cell cytotoxicity toward cancer cells. In this study, we found that a modified antibacterial peptide had a broad range of action against both gram-positive and gram-negative bacteria. A time-course experiment showed that CFU counts rapidly decreased after ZL-2 treatment, with the bacteria nearly eliminated within 4 h. We also examined the synergy between the peptide and antibiotics. The peptide ZL-2 resulted in a significant synergistic improvement in the potencies of ampicillin, erythromycin and ceftazidime against methicillin-resistant bacteria. In addition, ZL-2 had no detectable cytotoxicity in mouse spleen cells or a mouse animal model. In the mouse model by i.p. inoculation with Escherichia coli, timely treatment of i.p. injection with ZL-2 resulted in 100-fold reduction in bacteria load in blood as well as 80 % protection from death in the inoculated animals. In conclusion, we successfully identified a modified peptide with maximal bactericidal activity. This study also provides a potential therapeutic for the treatment of E. coli septicemia by increasing the activity of antimicrobials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alanis, A.J. 2005. Resistance to antibiotics: Are we in the post-antibiotic era? Archives of Medical Research 36: 697–705.

    Article  PubMed  Google Scholar 

  • Angebault, C., and A. Andremont. 2013. Antimicrobial agent exposure and the emergence and spread of resistant microorganisms: issues associated with study design. European Journal of Clinical Microbiology and Infectious Diseases 32: 581–595.

    Article  CAS  PubMed  Google Scholar 

  • Ben-David, D., I. Novikov, and L.A. Mermel. 2009. Are there differences in hospital cost between patients with nosocomial methicillin-resistant Staphylococcus aureus bloodstream infection and those with methicillin-susceptible S. aureus bloodstream infection? Infection Control and Hospital Epidemiology 30: 453–460.

    Article  PubMed  Google Scholar 

  • Brink, A.J., G.A. Richards, R.R. Cummins, and J. Lambson. 2008. Recommendations to achieve rapid therapeutic teicoplanin plasma concentrations in adult hospitalised patients treated for sepsis. International Journal of Antimicrobial Agents 32: 455–458.

    Article  CAS  PubMed  Google Scholar 

  • Brogden, K.A. 2005. Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? Nature Reviews Microbiology 3: 238–250.

    Article  CAS  PubMed  Google Scholar 

  • Chen, H.L., P.Y. Su, Y.S. Chang, S.Y. Wu, Y.D. Liao, H.M. Yu, T.L. Lauderdale, K. Chang, and C. Shih. 2013. Identification of a novel antimicrobial peptide from human hepatitis B virus core protein arginine-rich domain (ARD). PLoS Pathogens 9: e1003425.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chernysh, S.I., S.I. Kim, G. Bekker, V.A. Pleskach, N.A. Filatova, V.B. Anikin, V.G. Platonov, and P. Bulet. 2002. Antiviral and antitumor peptides from insects. Proceedings of the National Academy of Sciences of the United States of America 99: 12628–12632.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chernysh, S.I., N.A. Gordja, and N.P. Simonenko. 2000. Diapause and immune response: induction of antimicrobial peptides synthesis in the blowfly, Calliphora vicina R.-D. (Diptera, Calliphoridae). Entomological Science 3: 139–144.

    Google Scholar 

  • Choi, H., and D.G. Lee. 2012. Synergistic effect of antimicrobial peptide arenicin-1 in combination with antibiotics against pathogenic bacteria. Research in Microbiology 163: 479–486.

    Article  CAS  PubMed  Google Scholar 

  • Do, N., G. Weind, L. Grohmann, M. Salwiczek, B. Koksch, H.C. Korting, and M. Schäfer-Korting. 2014. Cationic membrane-active peptides-anticancer and antifungal activity as well as penetration into human skin. Experimental Dermatology 23: 326–331.

    Article  CAS  PubMed  Google Scholar 

  • Diz, M.S., A.O. Carvalho, R. Rodrigues, A.G. Neves-Ferreira, M. DaCunha, E.W. Alves, A.L. Okorokova-Façanha, M.A. Oliveira, J. Perales, O.L. Machado, and V.M. Gomes. 2006. Antimicrobial peptides from chili pepper seeds causes yeast plasma membrane permeabilization and inhibits the acidification of the medium by yeast cells. Biochimica et Biophysica Acta (BBA)-General Subjects 1760: 1323–1332.

    Article  CAS  Google Scholar 

  • Fox, J.L. 2013. Antimicrobial peptides stage a comeback. Nature Biotechnology 31: 379–382.

    Article  CAS  PubMed  Google Scholar 

  • Gifford, J.L., H.N. Hunter, and H.J. Vogel. 2005. Lactoferricin: A lactoferrin-derived peptide with antimicrobial, antiviral, antitumor and immunological properties. Cellular and Molecular Life Sciences 62: 2588–2598.

    Article  CAS  PubMed  Google Scholar 

  • Herold, B.C., L.C. Immergluck, M.C. Maranan, D.S. Lauderdale, R.E. Gaskin, S. Boyle-Vavra, C.D. Leitch, and R.S. Daum. 1998. Community-acquired methicillin-resistant Staphylococcus aureus in children with no identified predisposing risk. JAMA 279: 593–598.

    Article  CAS  PubMed  Google Scholar 

  • Heymann, D.L. 2006. Resistance to anti-infective drugs and the threat to public health. Cell 124: 67–675.

    Article  Google Scholar 

  • Hoskin, D.W., and A. Ramamoorthy. 2008. Studies on anticancer activities of antimicrobial peptides. Biochimica et Biophysica Acta 1778: 357–375.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huang, T.C., J.F. Lee, and J.Y. Chen. 2011. Pardaxin, an antimicrobial peptide, triggers caspase-dependent and ROS-mediated apoptosis in HT-1080 cells. Marine Drugs 9: 1995–2009.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kawasaki, H., T. Koyama, J.M. Conlon, F. Yamakura, and S. Iwamuro. 2008. Antimicrobial action of histone H2B in Escherichia coli: Evidence for membrane translocation and DNA-binding of a histone H2B fragment after proteolytic cleavage by outer membrane proteinase, T. Biochimie 90: 1693–1702.

    Article  CAS  PubMed  Google Scholar 

  • Klevens, R.M., M.A. Morrison, J. Nadle, S. Petit, K. Gershman, S. Ray, L.H. Harrison, R. Lynfield, G. Dumyati, J.M. Townes, A.S. Craig, E.R. Zell, G.E. Fosheim, L.K. McDougal, R.B. Carey, and S.K. Fridkin. 2007. Invasive methicillin-resistant Staphylococcus aureus infections in the United States. JAMA 298: 1763–1771.

    Article  CAS  PubMed  Google Scholar 

  • Lin, M.C., C.F. Hui, J.Y. Chen, and J.L. Wu. 2012. The antimicrobial peptide, shrimp anti-lipopolysaccharide factor (SALF), inhibits proinflammatory cytokine expressions through the MAPK and NF-B pathways in Trichomonas vaginalis adherent to HeLa cells. Peptides 38: 197–207.

    Article  CAS  PubMed  Google Scholar 

  • Markou, N., S.L. Markantonis, E. Dimitrakis, D. Panidis, E. Boutzouka, S. Karatzas, P. Rafailidis, H. Apostolakos, and G. Baltopoulos. 2008. Colistin serum concentrations after intravenous administration in critically ill patients with serious multidrug-resistant, gram-negative bacilli infections: a prospective, open-label, uncontrolled study. Clinical Therapeutics 30: 143–151.

    Article  CAS  PubMed  Google Scholar 

  • Morgan, M. 2011. Treatment of MRSA soft tissue infections: An overview. Injury 4: S11–S17.

    Article  Google Scholar 

  • Pag, U., M. Oedenkoven, N. Papo, Z. Oren, Y. Shai, and H.G. Sahl. 2004. In vitro activity and mode of action of diastereomeric antimicrobial peptides against bacterial clinical isolates. Journal of Antimicrobial Chemotherapy 53: 230–239.

    Article  CAS  PubMed  Google Scholar 

  • Pan, C.Y., V. Rajanbabu, J.Y. Chen, G.M. Her, and F.H. Nan. 2010. Evaluation of the epinecidin-1 peptide as an active ingredient in cleaning solutions against pathogens. Peptides 31: 1449–14458.

    Article  CAS  PubMed  Google Scholar 

  • Papo, N., and Y. Shai. 2005. Host defense peptides as new weapons in cancer treatment. Cellular and Molecular Life Sciences 62: 784–790.

    Article  CAS  PubMed  Google Scholar 

  • Sahl, H.G., U. Pag, S. Bonness, S. Wagner, N. Antcheva, and A. Tossi. 2005. Mammalian defensins: structures and mechanism of antibiotic activity. Journal of Leukocyte Biology 77: 466–475.

    Article  CAS  PubMed  Google Scholar 

  • Schuch, R., H.M. Lee, B.C. Schneider, K.L. Sauve, C. Law, B.K. Khan, J.A. Rotolo, Y. Horiuchi, D.E. Couto, A. Raz, V.A. Fischetti, D.B. Huang, R.C. Nowinski, and M. Wittekind. 2014. Combination therapy with lysin CF-301 and antibiotic is superior to antibiotic alone for treating methicillin-resistant Staphylococcus aureus-induced murine bacteremia. Journal of Infections Diseases 209: 1469–1478.

    Article  CAS  Google Scholar 

  • Seo, M.D., H.S. Won, J.H. Kim, T. Mishig-Ochir, and B.J. Lee. 2012. Antimicrobial peptides for therapeutic applications: A review. Molecules 17: 12276–12286.

    Article  CAS  PubMed  Google Scholar 

  • Sheng, M., Y. Zhao, A. Zhang, L. Wang, and G. Zhang. 2014. The effect of LfcinB9 on human ovarian cancer cell SK-OV-3 is mediated by inducing apoptosis. Journal of Peptide Science 20: 803–810.

    Article  CAS  PubMed  Google Scholar 

  • Wareham, D.W., N.C. Gordon, and M. Hornsey. 2011. In vitro activity of teicoplanin combined with colistin versus multidrug-resistant strains of Acinetobacter baumannii. Journal of Antimicrobial Chemotherapy 66: 1047–1051.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that no conflict of interest exists in the present study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shusheng Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tu, J., Wu, G., Zuo, Y. et al. ZL-2, a cathelicidin-derived antimicrobial peptide, has a broad antimicrobial activity against gram-positive bacteria and gram-negative bacteria in vitro and in vivo. Arch. Pharm. Res. 38, 1802–1809 (2015). https://doi.org/10.1007/s12272-015-0565-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-015-0565-z

Keywords

Navigation