Skip to main content
Log in

Compounds from the aerial parts of Piper bavinum and their anti-cholinesterase activity

  • Research Article
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

A new alkenylphenol, bavinol A (1), together with six known compounds (27) were isolated from the aerial parts of Piper bavinum (Piperaceae). The chemical structures of these compounds were determined by spectroscopic analyses including 2D NMR spectroscopy. The anti-Alzheimer effects of compounds 17 were evaluated from acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activity assays. Bavinol A (1), ampelopsin (3), and violanthin (4) exhibited AChE inhibitory activities with IC50 values of 29.80, 59.47 and 79.80 μM. Compound 1 also showed the most potent BChE inhibitory activity with an IC50 value of 19.25 μM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Barrett, B. 1994. Medicinal plants of Nicaragua’s Atlantic Coast. Economic Botany 48: 8–20.

    Article  Google Scholar 

  • Chaurasia, S., and R. Saxena. 2012. Antibacterial activity of four different varieties of green beans. Research Journal of Pharmaceutical, Biological and Chemical Sciences 3: 70–74.

    Google Scholar 

  • Cummings, J.L. 2000. Cholinesterase inhibitors: Expanding applications. Lancet 356: 2024–2025.

    Article  CAS  PubMed  Google Scholar 

  • Doss, A., and M. Pugualenthi. 2012. Evaluation of antioxydant activity and phytochemical screening of Malus domestica Borkh (apple) and Phaseolus vulgaris L. (green beans). Journal of Pharmaceutical and Scientific Innovation 3: 1–4.

    Google Scholar 

  • Ellman, G.L., K.D. Courtney, V.J. Andres, and R.M. Featherstone. 1961. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology 7: 88–95.

    Article  CAS  PubMed  Google Scholar 

  • Fan, P., A.E. Hay, A. Marston, and K. Hostettmann. 2008. Acetylcholinesterase-inhibitory activity of linarin from Buddleja davidii, structure-activity relationships of related flavonoids, and chemical investigation of Buddleja nitida. Pharmaceutical Biology 46: 596–601.

    Article  CAS  Google Scholar 

  • Flamini, G. 2007. Flavonoids and other compounds from the aerial parts of Viola etrusca. Chemistry and Biodiversity 4: 139–144.

    Article  CAS  PubMed  Google Scholar 

  • Giacobini, E. 2003. Cholinesterases: New roles in brain function and in Alzheimer’s disease. Neurochemical Research 28: 515–522.

    Article  CAS  PubMed  Google Scholar 

  • Greig, N.H., T. Utsuki, D.K. Ingram, Y. Wang, G. Pepeu, C. Scali, Q.S. Yu, J. Mamczarz, H.W. Holloway, T. Giordano, D. Chen, K. Furukawa, K. Sambamurti, A. Brossi, and D.K. Lahiri. 2005. Selective butyrylcholinesterase inhibition elevates brain acetylcholine, augments learning and lowers Alzheimer beta-amyloid peptide in rodent. Proceedings of the National Academy of Sciences of the United States of America 102: 17213–17218.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hasanein, P., and S. Shahidi. 2010. Effects of combined treatment with vitamins C and E on passive avoidance learning and memory in diabetic rats. Neurobiology of Learning and Memory 93: 472–478.

    Article  CAS  PubMed  Google Scholar 

  • Ingkaninan, K., P. Temkitthawon, K. Chuenchom, T. Yuyaem, and W. Thongnoi. 2003. Screening for acetylcholinesterase inhibitory activity in plants used in Thai traditional rejuvenating and neurotonic remedies. Journal of Ethnopharmacology 89: 261–264.

    Article  PubMed  Google Scholar 

  • Ji, H.F., and H.Y. Zhang. 2006. Theoretical evaluation of flavonoids as multipotent agents to combat Alzheimer’s disease. Journal of Molecular Structure 767: 3–9.

    Article  CAS  Google Scholar 

  • Kai, H., M. Baba, and T. Okuyama. 2007. Two new megastigmanes from the leaves of Cucumis sativus. Chemical and Pharmaceutical Bulletin 55: 133–136.

    Article  CAS  PubMed  Google Scholar 

  • Kiem, P.V., C.V. Minh, H. Huong, J.J. Lee, I.S. Lee, and Y.H. Kim. 2005. Phenolic constituents with inhibitory activity against NFAT transcription from Desmos chinensis. Archives of Pharmacal Research 28: 1345–1349.

    Article  CAS  PubMed  Google Scholar 

  • Khan, M., S.A.A. Elhussein, M.M. Khan, and N. Khan. 2012. Anti-acetylcholinesterase activity of Piper sarmentosum by a continuous immobilized-enzyme assay. APCBEE Procedia 2: 199–204.

    Article  CAS  Google Scholar 

  • Kou, X.J., and N. Chen. 2012. Pharmacological potential of ampelopsin in Rattan tea. Food Science and Human Wellness 1: 14–18.

    Article  Google Scholar 

  • Li, L., H. Sheng, F. Xu, and Q. Shen. 2009. Heterometal clusters Ln2Na8(OCH2CH2NMe2)12(OH)2 as homogeneous catalysts for the tishchenko reaction. Chinese Journal of Chemistry 27: 1127–1131.

    Article  CAS  Google Scholar 

  • Lim, S.S., S.M. Han, S.Y. Kim, Y.S. Bae, and I.J. Kang. 2007. Isolation of acetylcholinesterase inhibitors from the flowers of Chrysanthemum indicum Linne. Food Science and Biotechnology 16: 265–269.

    CAS  Google Scholar 

  • Matsuda, H., T. Morikawa, J. Tao, K. Ueda, and M. Yoshikawa. 2002. Bioactive Constituents of Chinese Natural Medicines. VII. Inhibitors of degranulation in RBL-2H3 cells and absolute stereostructures of three new diarylheptanoid glycosides from the bark of Myrica rubra. Chemical & Pharmaceutical Bulletin 50: 208–215.

    Article  CAS  Google Scholar 

  • Michel, J., R.E. Duarte, J.L. Bolton, Y. Huang, A. Caceres, M. Veliz, D.D. Soejarto, and G.B. Mahady. 2007. Medical potential of plants used by the Q’eqchi Maya of Livingston, Guatemala for the treatment of women’s health complaints. Journal of Ethnopharmacology 114: 92–101.

    Article  PubMed Central  PubMed  Google Scholar 

  • Parihar, M.S., and T. Hemnani. 2004. Alzheimer’s disease pathogenesis and therapeutic interventions. Journal of Clinical Neuroscience 1: 456–467.

    Article  Google Scholar 

  • Peng, W.H., M.T. Hsieh, and C.R. Wu. 1997. Effect of long-term administration of berberine on scopolamine-induced amnesia in rats. Japanese Journal of Pharmacology 74: 261–266.

    Article  CAS  PubMed  Google Scholar 

  • Philip, C.S., C.V. Nigel, and S.J.S. Monique. 2007. Polyoxygenated cyclohexane derivatives and other constituents from Kaempferia rotunda L. Phytochemistry 68: 1579–1586.

    Article  Google Scholar 

  • Scarpini, E., P. Scheltens, and H. Feldman. 2003. Treatment of Alzheimer’s disease: Current status and new perspectives. The Lancet Neurology 2: 539–547.

    Article  CAS  PubMed  Google Scholar 

  • Sengupta, S., and A.B. Ray. 1987. The chemistry of Piper species: A review. Fitoterapia 58: 147–166.

    CAS  Google Scholar 

  • Sawasdee, P., C. Sabphon, D. Sitthiwongwanit, and U. Kokpol. 2009. Anticholinesterase activity of 7-methoxyflavones isolated from Kaempferia parviflora. Phytotherapy Research 23: 1792–1794.

    Article  CAS  PubMed  Google Scholar 

  • Virinder, S.P., C.J. Subhash, S.B. Kirpal, J. Rajni, T. Poonam, J. Amitabh, D.T. Om, K.P. Ashok, W. Jesper, E.O. Carl, and B. Perm. 1997. Phytochemistry of the genus Piper. Phytochemistry 46: 597–673.

    Article  Google Scholar 

  • Whitehouse, P.J., D.L. Price, G.R. Struble, A.W. Clarke, J.T. Coyle, and M.R. DeLong. 1982. Alzheimer’s disease and senile dementia: Loss of neurons in the basal forebrain. Science 15: 1237–1239.

    Article  Google Scholar 

  • Zhu, F., and C. Qian. 2006. Berberine chloride can ameliorate the spatial memory impairment and increase the expression of interleukin-1β and inducible nitric oxide synthase in the rat model of Alzheimer’s disease. BMC Neuroscience 7: 78–86.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Foundation for Science and Technology Development, Vietnam (Project No: 104.01-2010-16), and Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (BK21 Plus program; 22A20130000073).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byung Sun Min.

Additional information

Hoang Viet Dung and To Dao Cuong have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 851 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dung, H.V., Cuong, T.D., Chinh, N.M. et al. Compounds from the aerial parts of Piper bavinum and their anti-cholinesterase activity. Arch. Pharm. Res. 38, 677–682 (2015). https://doi.org/10.1007/s12272-014-0432-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-014-0432-3

Keywords

Navigation