Skip to main content
Log in

BF-30 effectively inhibits ciprofloxacin-resistant bacteria in vitro and in a rat model of vaginosis

  • Research Article
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Bacterial infections are becoming increasingly difficult to treat due to the increasing number of multidrug-resistant strains. Cathelicidin-BF (BF-30) is a cathelicidin-like antimicrobial peptide and exhibits broad antimicrobial activity against bacteria. In the present study, the antibacterial activity of BF-30 against ciprofloxacin-resistant Escherichia coli and Staphylococcus aureus was examined, and the protective effects of this peptide against these bacteria in rats with bacterial vaginosis were identified for the first time. The data showed that BF-30 had effective antimicrobial activities against ciprofloxacin-resistant E. coli and S. aureus. The minimal inhibitory concentrations for both bacterial strains were 16 μg/ml, and the minimal bactericidal concentrations were 64 and 128 μg/ml, respectively. A time course experiment showed that the CFU counts rapidly decreased after BF-30 treatment, and the bacteria were nearly eliminated within 4 h. BF-30 could reduce the fold change (CFU/ml) in local colonization by drug-resistant E. coli and S. aureus to 0.01 at a dose of 0.8 mg/kg/day in the rats’ vaginal secretions. In addition, BF-30 induced membrane permeabilization and bound to the genomic DNA, interrupting protein synthesis. Taken together, our data demonstrate that BF-30 has potential therapeutic value for the prevention and treatment of bacterial vaginosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Belley, A., E. Neesham-Grenon, G. McKay, F.F. Arhin, R. Harris, T. Beveridge, T.R. Parr Jr, and G. Moeck. 2009. Oritavancin kills stationary-phase and biofilm Staphylococcus aureus cells in vitro. Antimicrobial Agents and Chemotherapy 53: 918–925.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brogden, K.A. 2005. Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? Nature Reviews Microbiology 3: 238–250.

    Article  CAS  PubMed  Google Scholar 

  • Chen, W., B. Yang, H. Zhou, L. Sun, J. Dou, H. Qian, W. Huang, Y. Mei, and J. Han. 2011. Structure-activity relationships of a snake cathelicidin-related peptide, BF-15. Peptides 32: 2497–2503.

    Article  CAS  PubMed  Google Scholar 

  • De Smet, K., and R. Contreras. 2005. Human antimicrobial peptides: Defensins, cathelicidins and histatins. Biotechnology Letters 27: 1337–1347.

    Article  PubMed  Google Scholar 

  • Deng, L., X. Pan, Y. Wang, L. Wang, X. Zhou, M. Li, Y. Feng, Q. Wu, B. Wang, and N. Huang. 2009. Hemoglobin and its derived peptides may play a role in the antibacterial mechanism of the vagina. Human Reproduction 24: 211–218.

    Article  CAS  PubMed  Google Scholar 

  • Di Nardo, A., K. Yamasaki, R.A. Dorschner, Y. Lai, and R.L. Gallo. 2008. Mast cell cathelicidin antimicrobial peptide prevents invasive group A Streptococcus infection of the skin. The Journal of Immunology 180: 7565–7573.

    Article  PubMed Central  PubMed  Google Scholar 

  • Dürr, U.H., U.S. Sudheendra, and A. Ramamoorthy. 2006. LL-37, the only human member of the cathelicidin family of antimicrobial peptides. Biochimica et Biophysica Acta 1758: 1408–1425.

    Article  PubMed  Google Scholar 

  • Elsbach, P. 2003. What is the real role of antimicrobial polypeptides that can mediate several other inflammatory responses? Journal of Clinical Investigation 111: 1643–1645.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Guo, Y., J. Wang, G. Niu, W. Shui, Y. Sun, H. Zhou, Y. Zhang, C. Yang, Z. Lou, and Z. Rao. 2011. A structural view of the antibiotic degradation enzyme NDM-1 from a superbug. Protein Cell 2: 384–394.

    Article  CAS  PubMed  Google Scholar 

  • Hancock, R.E., and R. Lehrer. 1998. Cationic peptides: A new source of antibiotics. Trends in Biotechnology 16: 82–88.

    Article  CAS  PubMed  Google Scholar 

  • Hao, G., Y. Shi, Y. Tang, and G. Le. 2009. The membrane action mechanism of analogs of the antimicrobial peptide Buforin 2. Peptides 30: 1421–1427.

    Article  CAS  PubMed  Google Scholar 

  • Hao, Q., H. Wang, J. Wang, J. Dou, M. Zhang, W. Zhou, and C. Zhou. 2013. Effective antimicrobial activity of Cbf-K16 and Cbf-A7A13 against NDM-1-carrying Escherichia coli by DNA binding after penetrating the cytoplasmic membrane in vitro. Journal of Peptide Science 19: 173–180.

    Article  CAS  PubMed  Google Scholar 

  • Huo, L., K. Zhang, J. Ling, Z. Peng, X. Huang, H. Liu, and L. Gu. 2011. Antimicrobial and DNA-binding activities of the peptide fragments of human lactoferrin and histatin 5 against Streptococcus mutans. Archives of Oral Biology 56: 869–876.

    Article  CAS  PubMed  Google Scholar 

  • Izadpanah, A., and R.L. Gallo. 2005. Antimicrobial peptides. Journal of the American Academy of Dermatology 52: 381–390.

    Article  PubMed  Google Scholar 

  • Jacoby, T.S., R.S. Kuchenbecker, R.P. Dos Santos, L. Magedanz, P. Guzatto, and L.B. Moreira. 2010. Impact of hospital-wide infection rate, invasive procedures use and antimicrobial consumption on bacterial resistance inside an intensive care unit. Journal of Hospital Infection 75: 23–27.

    Article  CAS  PubMed  Google Scholar 

  • Kanthawong, S., K. Nazmi, S. Wongratanacheewin, J.G. Bolscher, V. Wuthiekanun, and S. Taweechaisupapong. 2009. In vitro susceptibility of Burkholderia pseudomallei to antimicrobial peptides. International Journal of Antimicrobial Agents 34: 309–314.

    Article  CAS  PubMed  Google Scholar 

  • Kasetty, G., P. Papareddy, M. Kalle, V. Rydengård, M. Mörgelin, B. Albiger, M. Malmsten, and A. Schmidtchen. 2011. Structure-activity studies and therapeutic potential of host defense peptides of human thrombin. Antimicrobial Agents and Chemotherapy 55: 2880–2890.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kumarasamy, K.K., M.A. Toleman, T.R. Walsh, J. Bagaria, F. Butt, R. Balakrishnan, U. Chaudhary, M. Doumith, C.G. Giske, S. Irfan, P. Krishnan, A.V. Kumar, S. Maharjan, S. Mushtaq, T. Noorie, D.L. Paterson, A. Pearson, C. Perry, R. Pike, B. Rao, U. Ray, J.B. Sarma, M. Sharma, E. Sheridan, M.A. Thirunarayan, J. Turton, S. Upadhyay, M. Warner, W. Welfare, D.M. Livermore, and N. Woodford. 2010. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: A molecular, biological, andepidemiological study. The Lancet Infectious Diseases 10: 597–602.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Madhuri, Shireen, T., Venugopal, S.K., Ghosh, D., Gadepalli, R., Dhawan, B., and Mukhopadhyay, K. 2009. In vitro antimicrobial activity of alpha-melanocyte stimulating hormone against major human pathogen Staphylococcus aureus. Peptides 30:1627–1635.

  • Makobongo, M.O., T. Kovachi, H. Gancz, A. Mor, and D.S. Merrell. 2009. In vitro antibacterial activity of acyl-lysyl oligomers against Helicobacter pylori. Antimicrobial Agents and Chemotherapy 53: 4231–4239.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Marr, A.K., W.J. Gooderham, and R.E. Hancock. 2006. Antibacterial peptides for therapeutic use: Obstacles and realistic outlook. Current Opinion in Pharmacology 6: 468–472.

    Article  CAS  PubMed  Google Scholar 

  • Maurya, I.K., S. Pathak, M. Sharma, H. Sanwal, P. Chaudhary, S. Tupe, M. Deshpande, V.S. Chauhan, and R. Prasad. 2011. Antifungal activity of novel synthetic peptides by accumulation of reactive oxygen species (ROS) and disruption of cell wall against Candida albicans. Peptides 32: 1732–1740.

    Article  CAS  PubMed  Google Scholar 

  • McGrath, D.M., E.M. Barbu, W.H. Driessen, T.M. Lasco, J.J. Tarrand, P.C. Okhuysen, D.P. Kontoyiannis, R.L. Sidman, R. Pasqualini, and W. Arap. 2013. Mechanism of action and initial evaluation of a membrane active all-D-enantiomer antimicrobial peptidomimetic. Proceedings of the National Academy of Sciences 110: 3477–3482.

    Article  CAS  Google Scholar 

  • Powers, J.P., and R.E. Hancock. 2003. The relationship between peptide structure and antibacterial activity. Peptides 24: 1681–1691.

    Article  CAS  PubMed  Google Scholar 

  • Rajaei, A., M. Barzegar, A.M. Mobarez, M.A. Sahari, and Z.H. Esfahani. 2010. Antioxidant, anti-microbial and antimutagenicity activities of pistachio (Pistachia vera) green hull extract. Food and Chemical Toxicology 48: 107–112.

    Article  CAS  PubMed  Google Scholar 

  • Scott, A., Weldon, S., Buchanan, P. J., Schock, B., Ernst, R.K., McAuley, D.F., Tunney, M.M., Irwin, C.R., Elborn, J.S., and Taggart, C.C. 2011. Evaluation of the ability of LL-37 to neutralise LPS in vitro and ex vivo. PLoS One 6:e26525.

    Google Scholar 

  • Singh, M., and K. Mukhopadhyay. 2011. C-terminal amino acids of alpha-melanocyte-stimulating hormone are requisite for its antibacterial activity against Staphylococcus aureus. Antimicrobial Agents and Chemotherapy 55: 1920–1929.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sobel, J.D. 1990. Vaginal infections in adult women. The Medical Clinics of North America 74: 1573–1602.

    CAS  PubMed  Google Scholar 

  • Solé, M., C. Pitart, I. Roca, A. Fàbrega, P. Salvador, L. Muñoz, I. Oliveira, J. Gascón, F. Marco, and J. Vila. 2011. First description of an Escherichia coli strain producing NDM-1 carbapenemase in Spain. Antimicrobial Agents and Chemotherapy 55: 4402–4404.

    Article  PubMed Central  PubMed  Google Scholar 

  • Spiegel, C.A., R. Amsel, and K.K. Holmes. 1983. Diagnosis of bacterial vaginosis by direct gram stain of vaginal fluid. Journal of Clinical Microbiology 18: 170–177.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Spinillo, A., A.M. Bernuzzi, C. Cevini, R. Gulminetti, S. Luzi, and A. De Santolo. 1997. The relationship of bacterial vaginosis, Candida and Trichomonas infection to symptomatic vaginitis inpostmenopausal women attending a vaginitis clinic. Maturitas 27: 253–260.

    Article  CAS  PubMed  Google Scholar 

  • Wang, H., M. Ke, Y. Tian, J. Wang, B. Li, Y. Wang, and C. Zhou. 2013. BF-30 selectively inhibits melanoma cell proliferation via cytoplasmic membrane permeabilization and DNA-binding in vitro and in B16F10-bearing mice. European Journal of Pharmacology 707: 1–10.

    Article  CAS  PubMed  Google Scholar 

  • Wang, M., H. Wang, Y. Tang, D. Kang, Y. Gao, M. Ke, J. Dou, T. Xi, and C. Zhou. 2011. Effective inhibition of a Strongylocentrotus nudus eggs polysaccharide against hepatocellular carcinoma ismediated via immunoregulation in vivo. Immunology Letters 141: 74–82.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y., J. Hong, X. Liu, H. Yang, R. Liu, J. Wu, A. Wang, D. Lin, and R. Lai. 2008. Snake cathelicidin from Bungarus fasciatus is a potent peptide antibiotics. PLoS ONE 3: e3217.

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhou, H., J. Dou, J. Wang, L. Chen, H. Wang, W. Zhou, Y. Li, and C. Zhou. 2011. The antibacterial activity of BF-30 in vitro and in infected burned rats is through interference with cytoplasmicmembrane integrity. Peptides 32: 1131–1138.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was sponsored by the Scientific and Technological Support and Social Development Plan of Jiangsu Province (BE2012743), the Fundamental Research Funds for the Central Universities (JKP2011018), and the ‘111 Project’ from the Ministry of Education of China and the State Administration of Foreign Expert Affairs of China (111-2-07).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changlin Zhou.

Additional information

Jing Wang and Bing Li have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Li, B., Li, Y. et al. BF-30 effectively inhibits ciprofloxacin-resistant bacteria in vitro and in a rat model of vaginosis. Arch. Pharm. Res. 37, 927–936 (2014). https://doi.org/10.1007/s12272-013-0248-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-013-0248-6

Keywords

Navigation