Skip to main content
Log in

Stability of citrate-capped silver nanoparticles in exposure media and their effects on the development of embryonic zebrafish (Danio rerio)

  • Research Article
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

The stability of citrate-capped silver nanoparticles (AgNPs) and the embryonic developmental toxicity were evaluated in the fish test water. Serious aggregation of AgNPs was observed in undiluted fish water (DM-100) in which high concentration of ionic salts exist. However, AgNPs were found to be stable for 7 days in DM-10, prepared by diluting the original fish water (DM-100) with deionized water to 10 %. The normal physiology of zebrafish embryos were evaluated in DM-10 to see if DM-10 can be used as a control vehicle for the embryonic fish toxicity test. As results, DM-10 without AgNPs did not induce any significant adverse effects on embryonic development of zebrafish determined by mortality, hatching, malformations and heart rate. When embryonic toxicity of AgNPs was tested in both DM-10 and in DM-100, AgNPs showed higher toxicity in DM-10 than in DM-100. This means that the big-sized aggregates of AgNPs were low toxic compared to the nano-sized AgNPs. AgNPs induced delayed hatching, decreased heart rate, pericardial edema, and embryo death. Accumulation of AgNPs in the embryo bodies was also observed. Based on this study, citrate-capped AgNPs are not aggregated in DM-10 and it can be used as a control vehicle in the toxicity test of fish embryonic development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahamed, M., M.S. Alsalhi, and M.K. Siddiqui. 2010. Silver nanoparticle applications and human health. Clinica Chimica Acta 411: 1841–1848.

    Article  CAS  Google Scholar 

  • Bar-Ilan, O., R.M. Albrecht, V.E. Fako, and D.Y. Furgeson. 2009. Toxicity assessments of multisized gold and silver nanoparticles in zebrafish embryos. Small (Weinheim an der Bergstrasse, Germany) 5: 1897–1910.

    Article  CAS  Google Scholar 

  • Bielmyer, G.K., M. Grosell, and K.V. Brixti. 2006. Toxicity of silver, zinc, copper, and nickel to the copepod Acartia tonsa exposed via a phytoplankton diet. Environmental Science and Technology 40: 2063–2068.

    Article  PubMed  CAS  Google Scholar 

  • Bilberg, K., H. Malte, T. Wang, and E. Baatrup. 2010. Silver nanoparticles and silver nitrate cause respiratory stress in Eurasian perch (Perca fluviatilis). Aquatic Toxicology 96: 159–165.

    Article  PubMed  CAS  Google Scholar 

  • Bilberg, K., M.B. Hovgaard, F. Besenbacher, and E. Baatrup. 2012. In vivo toxicity of silver nanoparticles and silver ions in zebrafish (Danio rerio), 1–9. Article: Journal of Toxicology.

    Google Scholar 

  • Chen, K.L., and M. Elimelech. 2006. Aggregation and deposition kinetics of fullerene (C60) nanoparticles. Langmuir 22: 10994–11001.

    Article  PubMed  CAS  Google Scholar 

  • El Badawy, A.M., T.P. Luxton, R.G. Silva, K.G. Scheckel, M.T. Suidan, and T.M. Tolaymat. 2010. Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions. Environmental Science and Technology 44: 1260–1266.

    Article  PubMed  Google Scholar 

  • Fabrega, J., S.N. Luoma, C.R. Tyler, T.S. Galloway, and J.R. Lead. 2011. Silver nanoparticles: behaviour and effects in the aquatic environment. Environment International 37: 517–531.

    Article  PubMed  CAS  Google Scholar 

  • Griffitt, R.J., J. Luo, J. Gao, J.C. Bonzongo, and D.S. Barber. 2008. Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms. Environmental Toxicology and Chemistry 27: 1972–1978.

    Article  PubMed  CAS  Google Scholar 

  • Harper, S.L., C.Y. Usenko, J. Hutchison, B.L.S. Maddux, and R.L. Tanguay. 2008. In vivo biodistribution and toxicity depends on nanomaterial composition, size, surface functionalization and route of exposure. Journal of Experimental Nanoscience 3: 195–206.

    Article  CAS  Google Scholar 

  • Harper, S.L., J. Hutchison, B.L.S. Maddux, and R.L. Tanguay. 2010. Integrative strategies to understand nanomaterial-biological interactions. International Perspectives on Environmental Nanotechnology: Applications and Implications. 2: 51–56.

    Google Scholar 

  • Kim, Y.S., J.S. Kim, H.S. Cho, D.S. Rha, J.M. Kim, J.D. Park, B.S. Choi, R. Lim, H.K. Chang, Y.H. Chung, I.H. Kwon, J. Jeong, B.S. Han, and I.J. Yu. 2008. Twenty-eight-day oral toxicity, genotoxicity, and gender-related tissue distribution of silver nanoparticles in Sprague-Dawley rats. Inhalation Toxicology 20: 575–583.

    Article  PubMed  CAS  Google Scholar 

  • Kimmel, C.B., W.W. Ballard, S.R. Kimmel, B. Ullmann, and T.F. Schilling. 1995. Stages of embryonic development of the zebrafish. Developmental Dynamics 203: 253–310.

    Article  PubMed  CAS  Google Scholar 

  • Lee, K.J., P.D. Nallathamby, L.M. Browning, C.J. Osgood, and X.H. Xu. 2007. In vivo imaging of transport and biocompatibility of single silver nanoparticles in early development of zebrafish embryos. ACS Nano 1: 133–143.

    Article  PubMed  CAS  Google Scholar 

  • Park, E.J., J. Yi, Y. Kim, K. Choi, and K. Park. 2010. Silver nanoparticles induce cytotoxicity by a Trojan-horse type mechanism. Toxicology In Vitro 24: 872–878.

    Article  PubMed  CAS  Google Scholar 

  • Powers, C.M., T.A. Slotkin, F.J. Seidler, A.R. Badireddy, and S. Padilla. 2011. Silver nanoparticles alter zebrafish development and larval behavior: distinct roles for particle size, coating and composition. Neurotoxicology and Teratology 33: 708–714.

    Article  PubMed  CAS  Google Scholar 

  • Roh, J.Y., S.J. Sim, J. Yi, K. Park, K.H. Chung, D.Y. Ryu, and J. Choi. 2009. Ecotoxicity of silver nanoparticles on the soil nematode Caenorhabditis elegans using functional ecotoxicogenomics. Environmental Science and Technology 43: 3933–3940.

    Article  PubMed  CAS  Google Scholar 

  • Römer, I., T.A. White, M. Baalousha, K. Chipman, M.R. Viant, and J.R. Lead. 2011. Aggregation and dispersion of silver nanoparticles in exposure media for aquatic toxicity tests. Journal of Chromatography A 1218: 4226–4233.

    Article  PubMed  Google Scholar 

  • Scown, T.M., E.M. Santos, B.D. Johnston, B. Gaiser, M. Baalousha, S. Mitov, J.R. Lead, V. Stone, T.F. Fernandes, M. Jepson, R. van Aerle, and C.R. Tyler. 2010. Effects of aqueous exposure to silver nanoparticles of different sizes in rainbow trout. Toxicological Sciences 115: 521–534.

    Article  PubMed  CAS  Google Scholar 

  • Sung, J.H., J.H. Ji, J.D. Park, J.U. Yoon, D.S. Kim, K.S. Jeon, M.Y. Song, J. Jeong, B.S. Han, J.H. Han, Y.H. Chung, H.K. Chang, J.H. Lee, M.H. Cho, B.J. Kelman, and I.J. Yu. 2009. Subchronic inhalation toxicity of silver nanoparticles. Toxicological Sciences 108: 452–461.

    Article  PubMed  CAS  Google Scholar 

  • Truong, L., S.L. Harper, and R.L. Tanguay. 2011. Evaluation of embryotoxicity using the zebrafish model. Methods in Molecular Biology 691: 271–279.

    Article  PubMed  CAS  Google Scholar 

  • Usenko, C.Y., S.L. Harper, and R.L. Tanguay. 2007. In vivo evaluation of carbon fullerene toxicity using embryonic zebrafish. Carbon 45: 1891–1898.

    Article  PubMed  CAS  Google Scholar 

  • Usenko, C.Y., S.L. Harper, and R.L. Tanguay. 2008. Fullerene C60 exposure elicits an oxidative stress response in embryonic zebrafish. Toxicology and Applied Pharmacology 229: 44–55.

    Article  PubMed  CAS  Google Scholar 

  • Yen, H.J., S.H. Hsu, and C.L. Tsai. 2009. Cytotoxicity and immunological response of gold and silver nanoparticles of different sizes. Small (Weinheim an der Bergstrasse, Germany) 5: 1553–1561.

    Article  CAS  Google Scholar 

  • Yeo, M.K., and S.W. Pak. 2008. Exposing zebrafish to silver nanoparticles during caudal fin regeneration disrupts caudal fin growth and p53 signaling. Molecular and Cellular Toxicology 4: 311–317.

    Google Scholar 

  • Yeo, M.K., and J.W. Yoon. 2009. Comparison of the effects of nano-silver antibacterial coatings and silver ions on zebrafish embryogenesis. Molecular and Cellular Toxicology 5: 23–31.

    Google Scholar 

Download references

Acknowledgments

This work was supported by National Research Foundation of Korea Grant funded by the Korean Government (NRF-2010-013-E00035). Support to SLH was provided in part by National Institute of Environmental Health Sciences (NIEHS) grants ES017552-01A2, ES016896-01 and P30 ES03850, and the Air Force Research Laboratory (AFRL) FA8650-05-1-5041.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kwangsik Park or Stacey L. Harper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, K., Tuttle, G., Sinche, F. et al. Stability of citrate-capped silver nanoparticles in exposure media and their effects on the development of embryonic zebrafish (Danio rerio). Arch. Pharm. Res. 36, 125–133 (2013). https://doi.org/10.1007/s12272-013-0005-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-013-0005-x

Keywords

Navigation