Skip to main content
Log in

Druggability of the CK2 inhibitor CX-4945 as an anticancer drug and beyond

  • Report on Investigational Drugs
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Casein kinase 2 (CK2) is involved in multiple cellular processes such as proliferation, apoptosis, and cell cycle. In particular, its over-expression in human cancers is associated with angiogenesis and tumor progression. As a first orally bioavailable small molecule inhibitor of CK2, CX-4945 exerts anti-proliferative activity in human cancer cells by inhibiting the cell cycle and the PI3K/Akt signaling pathway. Additionally, CX-4945 reduces angiogenesis via blockade of hypoxia-inducible factor-1α transcription and suppresses the inflammatory interleukin-6 production in human breast cancer cells. These effects are supported by results from mouse xenograft model investigations. Here, we discuss the druggability of CX-4945 and its potential to be developed as an anti-cancer drug in clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allende, J. E. and Allende, C. C., Protein kinases. 4. Protein kinase CK2: an enzyme with multiple substrates and a puzzling regulation. FASEB J., 9, 313–323 (1995).

    PubMed  CAS  Google Scholar 

  • Ara, T. and Declerck, Y. A., Interleukin-6 in bone metastasis and cancer progression. Eur. J. Cancer, 46, 1223–1231 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Battistutta, R., Cozza, G., Pierre, F., Papinutto, E., Lolli, G., Sarno, S., O’Brien, S. E., Siddiqui-Jain, A., Haddach, M., Anderes, K., Ryckman, D. M., Meggio, F., and Pinna, L. A., Unprecedented selectivity and structural determinants of a new class of protein kinase CK2 inhibitors in clinical trials for the treatment of cancer. Biochemistry, 50, 8478–8488 (2011).

    Article  PubMed  CAS  Google Scholar 

  • Channavajhala, P. and Seldin, D. C., Functional interaction of protein kinase CK2 and c-Myc in lymphomagenesis. Oncogene, 21, 5280–5288 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Drygin, D., Ho, C. B., Omori, M., Bliesath, J., Proffitt, C., Rice, R., Siddiqui-Jain, A., O’Brien, S., Padgett, C., Lim, J. K., Anderes, K., Rice, W. G., and Ryckman, D., Protein kinase CK2 modulates IL-6 expression in inflammatory breast cancer. Biochem. Biophys. Res. Commun., 415, 163–167 (2011).

    Article  PubMed  CAS  Google Scholar 

  • Ferguson, A. D., Sheth, P. R., Basso, A. D., Paliwal, S., Gray, K., Fischmann, T. O., and Le, H. V., Structural basis of CX-4945 binding to human protein kinase CK2. FEBS Lett., 585, 104–110 (2011).

    Article  PubMed  CAS  Google Scholar 

  • Guerra, B. and Issinger, O. G., Protein kinase CK2 and its role in cellular proliferation, development and pathology. Electrophoresis, 20, 391–408 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Guerra, B. and Issinger, O. G., Protein kinase CK2 in human disease. Curr. Med. Chem., 15, 1870–1886 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Hessenauer, A., Schneider, C. C., Götz, C., and Montenarh, M., CK2 inhibition induces apoptosis via the ER stress response. Cell Signal., 23, 145–151 (2011).

    Article  PubMed  CAS  Google Scholar 

  • Homma, M. K. and Homma, Y., Cell cycle and activation of CK2. Mol. Cell. Biochem., 316, 49–55 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Hubert, A., Paris, S., Piret, J. P., Ninane, N., Raes, M., and Michiels, C., Casein kinase 2 inhibition decreases hypoxiainducible factor-1 activity under hypoxia through elevated p53 protein level. J. Cell Sci., 119, 3351–3362 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Kramerov, A. A., Saghizadeh, M., Caballero, S., Shaw, L. C., Li Calzi, S., Bretner, M., Montenarh, M., Pinna, L. A., Grant, M. B., and Ljubimov, A. V., Inhibition of protein kinase CK2 suppresses angiogenesis and hematopoietic stem cell recruitment to retinal neovascularization sites. Mol. Cell. Biochem., 316, 177–186 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Landesman-Bollag, E., Song, D. H., Romieu-Mourez, R., Sussman, D. J., Cardiff, R. D., Sonenshein, G. E., and Seldin, D. C., Protein kinase CK2: signaling and tumorigenesis in the mammary gland. Mol. Cell. Biochem., 227, 153–165 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Litchfield, D. W., Protein kinase CK2: structure, regulation and role in cellular decisions of life and death. Biochem. J., 369, 1–15 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Meggio, F. and Pinna, L. A., One-thousand-and-one substrates of protein kinase CK2? FASEB J., 17, 349–368 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Mottet, D., Ruys, S. P., Demazy, C., Raes, M., and Michiels, C., Role for casein kinase 2 in the regulation of HIF-1 activity. Int. J. Cancer, 117, 764–774 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Padgett, C. S., Lim, J. K. C., Marschke, R. F., Northfelt, D. W., Andreopoulou, E., Von Hoff, D. D., Anderes, K., Ryckman, D. M., Chen, T. K., and O’Brien, S. E., Clinical pharmacokinetics and pharmacodynamics of CX-4945, a novel inhibitor of protein kinase CK2: interim report from the phase 1 clinical trial. In: 22nd EORTC-NCI-AACR symposium on “molecular targets and cancer therapeutics”, Berlin (2010)

  • Pierre, F., Chua, P. C., O’Brien, S. E., Siddiqui-Jain, A., Bourbon, P., Haddach, M., Michaux, J., Nagasawa, J., Schwaebe, M. K., Stefan, E., Vialettes, A., Whitten, J. P., Chen, T. K., Darjania, L., Stansfield, R., Bliesath, J., Drygin, D., Ho, C., Omori, M., Proffitt, C., Streiner, N., Rice, W. G., Ryckman, D. M., and Anderes, K., Pre-clinical characterization of CX-4945, a potent and selective small molecule inhibitor of CK2 for the treatment of cancer. Mol. Cell Biochem., 356, 37–43 (2011a).

    Article  PubMed  CAS  Google Scholar 

  • Pierre, F., Chua, P. C., O’Brien, S. E., Siddiqui-Jain, A., Bourbon, P., Haddach, M., Michaux, J., Nagasawa, J., Schwaebe, M. K., Stefan, E., Vialettes, A., Whitten, J. P., Chen, T. K., Darjania, L., Stansfield, R., Anderes, K., Bliesath, J., Drygin, D., Ho, C., Omori, M., Proffitt, C., Streiner, N., Trent, K., Rice, W. G., and Ryckman, D. M., Discovery and SAR of 5-(3-chlorophenylamino) benzo[c][2,6]naphthyridine-8-carboxylic acid (CX-4945), the first clinical stage inhibitor of protein kinase CK2 for the treatment of cancer. J. Med. Chem., 54, 635–654 (2011b).

    Article  PubMed  CAS  Google Scholar 

  • Pluemsampant, S., Safronova, O. S., Nakahama, K. I., and Morita, I., Protein kinase CK2 is a key activator of histone deacetylase in hypoxia-associated tumors. Int. J. Cancer, 122, 333–341 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Prowald, K., Fischer, H., and Issinger, O. G., Enhanced casein kinase II activity in human tumour cell cultures. FEBS Lett., 176, 479–483 (1984).

    Article  PubMed  CAS  Google Scholar 

  • Shiojima, I. and Walsh, K., Role of Akt signaling in vascular homeostasis and angiogenesis. Circ. Res., 90, 1243–1250 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Siddiqui-Jain, A., Drygin, D., Streiner, N., Chua, P., Pierre, F., O’Brien, S. E., Bliesath, J., Omori, M., Huser, N., Ho, C., Proffitt, C., Schwaebe, M. K., Ryckman, D. M., Rice, W. G., and Anderes, K., CX-4945, an orally bioavailable selective inhibitor of protein kinase CK2, inhibits prosurvival and angiogenic signaling and exhibits antitumor efficacy. Cancer Res., 70, 10288–10298 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Slaton, J. W., Unger, G. M., Sloper, D. T., Davis, A. T., and Ahmed, K., Induction of apoptosis by antisense CK2 in human prostate cancer xenograft model. Mol. Cancer Res., 2, 712–721 (2004).

    PubMed  CAS  Google Scholar 

  • Tawfic, S., Yu, S., Wang, H., Faust, R., Davis, A., and Ahmed, K., Protein kinase CK2 signal in neoplasia. Histol. Histopathol., 16, 573–582 (2001).

    PubMed  CAS  Google Scholar 

  • van Golen, K. L., Wu, Z. F., Qjao, X. T., Bao, L., and Merajver, S. D., RhoC GTPase overexpression modulates induction of angiogenic factors in breast cell. Neoplasia, 2, 418–425 (2000).

    Article  PubMed  Google Scholar 

  • Wang, G., Unger, G., Ahmad, K. A., Slaton, J. W., and Ahmed, K., Downregulation of CK2 induces apoptosis in cancer cells-a potential approach to cancer therapy. Mol. Cell. Biochem., 274, 77–84 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Wang, H., Davis, A., Yu, S., and Ahmed, K., Response of cancer cells to molecular interruption of the CK2 signal. Mol. Cell. Biochem., 227, 167–174 (2001).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong Hwan Kim.

Additional information

Edited by Donghak Kim, Department of Biological Sciences, Konkuk University, Seoul 143-701, Korea Tel: 82-2-450-3366 E-mail: donghak@konkuk.ac.kr

Seong Hwan Kim Principle Researcher Laboratory of Translational Therapeutics, Pharmacology Research Center, Korea Research Institute of Chemical Technology 1991∼1995 Sungkyunkwan University, Biochemistry, BA 1997∼1999 Sungkyunkwan University, Biochemistry, MS 1999∼2002 University of Vienna, Austria, Biochemistry, PhD Main Research Areas Cancer Biology (Autophagy, EMT, Metastasis, First-in-Class Target study) Bone Biology for Developing Anti-Osteoporotic Drugs

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, J., Kim, S.H. Druggability of the CK2 inhibitor CX-4945 as an anticancer drug and beyond. Arch. Pharm. Res. 35, 1293–1296 (2012). https://doi.org/10.1007/s12272-012-0800-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-012-0800-9

Keywords

Navigation