Skip to main content
Log in

The phosphoinositide-3-kinase/Akt pathway mediates the transient increase in Nanog expression during differentiation of F9 cells

  • Drug Actions
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Nanog is a key determinant that maintains self-renewal and pluripotency of embryonic stem cells and represses their differentiation to endoderm. In this study, we examined the regulation of Nanog expression by phosphoinositide-3-kinase (PI3K)/Akt pathway during retinoic acid (RA)-induced differentiation of F9 embryonic carcinoma cells. Nanog protein expression was transiently upregulated up to 6 h after RA treatment and then declined. In agreement, a murine Nanog promoter reporter assay revealed that promoter activity increased during early stage of differentiation, but decreased when F9 cells became fully differentiated. RA treatment of F9 cells also led to a transient and parallel increase in both Akt and glycogen synthase kinase 3β phosphorylations. Nanog expression was diminished in the early stage by LY294002, a PI3K inhibitor, but was not affected in the late stage despite considerable inhibition of Akt phosphorylation and endoderm marker expression by the inhibitor. These data suggest that RA-induced PI3K/Akt activation in the early stage of differentiation is required for Nanog expression, which becomes independent of PI3K/Akt signaling once the differentiation is established. Thus, Nanog expression appears to be differently regulated by the PI3K/Akt pathway depending on differentiation stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anneren, C., Cowan, C. A., and Melton, D. A., The Src family of tyrosine kinases is important for embryonic stem cell self-renewal. J. Biol. Chem., 279, 31590–31598 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Artzt, K., Dubois, P., Bennett, D., Condamine, H., Babinet, C., and Jacob, F., Surface antigens common to mouse cleavage embryos and primitive teratocarcinoma cells in culture. Proc. Natl. Acad. Sci. U.S.A., 70, 2988–2992 (1973).

    Article  CAS  PubMed  Google Scholar 

  • Bastien, J., Plassat, J. L., Payrastre, B., and Rochette-Egly, C., The phosphoinositide 3-kinase/Akt pathway is essential for the retinoic acid-induced differentiation of F9 cells. Oncogene, 25, 2040–2047 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Bernstine, E. G., Hooper, M. L., Grandchamp, S., and Ephrussi, B., Alkaline phosphatase activity in mouse teratoma. Proc. Natl. Acad. Sci. U.S.A., 70, 3899–3903 (1973).

    Article  CAS  Google Scholar 

  • Calautti, E., Li, J., Saoncella, S., Brissette, J. L., and Goetinck, P. F., Phosphoinositide 3-kinase signaling to Akt promotes keratinocyte differentiation versus death. J. Biol. Chem., 280, 32856–32865 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Chambers, I., Colby, D., Robertson, M., Nichols, J., Lee, S., Tweedie, S., and Smith, A., Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell, 113, 643–655 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Chen, Y., Du, Z., and Yao, Z., Roles of the Nanog protein in murine F9 embryonal carcinoma cells and their endoderm-differentiated counterparts. Cell Res., 16, 641–650 (2006).

    Article  PubMed  Google Scholar 

  • Darr, H., Mayshar, Y., and Benvenisty, N., Overexpression of NANOG in human ES cells enables feeder-free growth while inducing primitive ectoderm features. Development, 133, 1193–1201 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Hamazaki, T., Oka, M., Yamanaka, S., and Terada, N., Aggregation of embryonic stem cells induces Nanog repression and primitive endoderm differentiation. J. Cell Sci., 117, 5681–5686 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Hamazaki, T., Kehoe, S. M., Nakano, T., and Terada, N., The Grb2/Mek pathway represses Nanog in murine embryonic stem cells. Mol. Cell. Biol., 26, 7539–7549 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Hyslop, L., Stojkovic, M., Armstrong, L., Walter, T., Stojkovic, P., Przyborski, S., Herbert, M., Murdoch, A., Strachan, T., and Lako, M., Downregulation of NANOG induces differentiation of human embryonic stem cells to extraembryonic lineages. Stem Cells, 23, 1035–1043 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Kim, J. S., Kim, J., Kim, B. S., Chung, H. Y., Lee, Y. Y., Park, C. S., Lee, Y. S., Lee, Y. H., and Chung, I. Y., Identification and functional characterization of an alternative splice variant within the fourth exon of human nanog. Exp. Mol. Med., 37, 601–607 (2005).

    CAS  PubMed  Google Scholar 

  • Kuroda, T., Tada, M., Kubota, H., Kimura, H., Hatano, S.Y., Suemori, H., Nakatsuji, N., and Tada, T., Octamer and Sox elements are required for transcriptional cis regulation of Nanog gene expression. Mol. Cell. Biol., 25, 2475–2485 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Lin, T., Chao, C., Saito, S., Mazur, S. J., Murphy, M. E., Appella, E., and Xu, Y., p53 induces differentiation of mouse embryonic stem cells by suppressing Nanog expression. Nat. Cell Biol., 7, 165–171 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Loh, Y. H., Wu, Q., Chew, J. L., Vega, V. B., Zhang, W., Chen, X., Bourque, G., George, J., Leong, B., Liu, J., Wong, K. Y., Sung, K. W., Lee, C. W., Zhao, X. D., Chiu, K. P., Lipovich, L., Kuznetsov, V. A., Robson, P., Stanton, L. W., Wei, C. L., Ruan, Y., Lim, B., and Ng, H. H., The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat. Genet., 38, 431–440 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Carballo, G., Moreno, L., Masia, S., Perez, P., and Barettino, D., Activation of the phosphatidylinositol 3-kinase/Akt signaling pathway by retinoic acid is required for neural differentiation of SH-SY5Y human neuroblastoma cells. J. Biol. Chem., 277, 25297–25304 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Mitsui, K., Tokuzawa, Y., Itoh, H., Segawa, K., Murakami, M., Takahashi, K., Maruyama, M., Maeda, M., and Yamanaka, S., The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell, 113, 631–642 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Piestun, D., Kochupurakkal, B. S., Jacob-Hirsch, J., Zeligson, S., Koudritsky, M., Domany, E., Amariglio, N., Rechavi, G., and Givol, D., Nanog transforms NIH3T3 cells and targets cell-type restricted genes. Biochem. Biophys. Res. Commun., 343, 279–285 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Rodda, D. J., Chew, J. L., Lim, L. H., Loh, Y. H., Wang, B., Ng, H. H., and Robson, P., Transcriptional regulation of nanog by OCT4 and SOX2. J. Biol. Chem., 280, 24731–24737 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Sato, N., Meijer, L., Skaltsounis, L., Greengard, P., and Brivanlou, A. H., Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat. Med., 10, 55–63 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Singh, A. M., Hamazaki, T., Hankowski, K. E., and Terada, N., A heterogeneous expression pattern for Nanog in embryonic stem cells. Stem Cells, 25, 2534–2542 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Storm, M. P., Bone, H. K., Beck, C. G., Bourillot, P. Y., Schreiber, V., Damiano, T., Nelson, A., Savatier, P., and Welham, M. J., Regulation of Nanog expression by phosphoinositide 3-kinase-dependent signaling in murine embryonic stem cells. J. Biol. Chem., 282, 6265–6273 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Strickland S. and Mahdavi V., The induction of differentiation in teratocarcinomas stem cells by retinoic acid. Cell, 15, 393–403 (1978).

    Article  CAS  PubMed  Google Scholar 

  • Takao, Y., Yokota, T., and Koide, H., Beta-catenin up-regulates Nanog expression through interaction with Oct-3/4 in embryonic stem cells. Biochem. Biophys. Res. Commun., 353, 699–705 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Verheijen, M. H., Wolthuis, R. M., Bos, J. L., and Defize, L. H., The Ras/Erk pathway induces primitive endoderm but prevents parietal endoderm differentiation of F9 embryonal carcinoma cells. J. Biol. Chem., 274, 1487–1494 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Vlahos, C. J., Matter, W. F., Hui, K. Y., and Brown, R. F., A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002). J. Biol. Chem., 269, 5241–5248 (1994).

    CAS  PubMed  Google Scholar 

  • Wu da, Y. and Yao, Z., Isolation and characterization of the murine Nanog gene promoter. Cell Res., 15, 317–324 (2005).

    Article  PubMed  Google Scholar 

  • Yoshida-Koide, U., Matsuda, T., Saikawa, K., Nakanuma, Y., Yokota, T., Asashima, M., and Koide, H., Involvement of Ras in extraembryonic endoderm differentiation of embryonic stem cells. Biochem. Biophys. Res. Commun., 313, 475–481 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Zhang, J., Wang, X., Chen, B., Suo, G., Zhao, Y., Duan, Z., and Dai, J., Expression of Nanog gene promotes NIH3T3 cell proliferation. Biochem. Biophys. Res. Commun., 338, 1098–1102 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Il Yup Chung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, J.S., Kim, B.S., Kim, J. et al. The phosphoinositide-3-kinase/Akt pathway mediates the transient increase in Nanog expression during differentiation of F9 cells. Arch. Pharm. Res. 33, 1117–1125 (2010). https://doi.org/10.1007/s12272-010-0719-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-010-0719-y

Key words

Navigation