Skip to main content
Log in

Enantioselective pharmacokinetics of sibutramine in rat

  • Research Articles
  • Drug Actions
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Racemic sibutramine is widely used to treat obesity owing to its inhibition of serotonin and noradrenaline reuptake in synapses. Although the enantioselective effects of sibutramine and its two active desmethyl-metabolites, monodesmethylsibutramine (MDS) and didesmethylsibutramine (DDS), on anorexia and energy expenditure have been elucidated, the enantioselective pharmacokinetics of sibutramine are still unclear. Therefore, we aimed to characterize the enantioselective pharmacokinetics of sibutramine and its metabolites in plasma and urine following an intravenous and a single oral administration of sibutramine in rats. The absolute bioavailability of sibutramine was only about 7%. The pharmacologically less effective S-isomer of DDS was predominant in the plasma: the C max and the AUC inf were 28 and 30 times higher than those of the R-isomer, respectively (p<0.001). In the urine, the concentrations of the R-isomers of hydroxylated DDS and hydroxylated and carbamoylglucuronized MDS and DDS appeared to be 11.3-, 5.1-, and 5.3-times the concentrations of the respective S-isomers. Thus, regardless of increased potency than the S-enantiomers, the R-enantiomers of the sibutramine metabolites MDS and DDS were present at lower concentrations, owing to their rapid biotransformation to hydroxylated and/or carbamoylglucuronized forms and their faster excretion in the urine. The present study is the first to elucidate the enantioselective pharmacokinetics of sibutramine in rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bae, K., Noh, K., Jang, K., Kim, S., Yong, C.S., Choi, H. G., Kang, J.S., Chen, J., Ma, E., Lee M., Shin, B. S., Kwon, K. I., and Kang, W., Analysis of enantiomers of sibutramine and its metabolites in rat plasma by liquid chromatography-mass spectrometry using a chiral stationaryphase column. J. Pharm. Biomed. Anal., 50, 267–270 (2009).

    Article  PubMed  CAS  Google Scholar 

  • Bae, S. K., Cao, S., Seo, K. A., Kim, H., Kim, M. J., Shon, J. H., Liu, K. H., Zhou, H. H., and Shin, J. G., Cytochrome P450 2B6 catalyzes the formation of pharmacologically active sibutramine (N-{1-[1-(4-chlorophenyl)cyclobutyl]-3-methylbutyl}-N,N-dimethylamine) metabolites in human liver microsomes. Drug Metab. Dispos., 36, 1679–1688 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Fang, Q. K., Senanayake, C. H., Han, Z., Morency, C., Grover, P., Malone, R. E., Bulter, H., Wald, S. A., and Cameron, T. S., First preparation of enantiomerically pure sibutramine and its major metabolite, and determination of their absolute configuration by single crystal X-ray analysis. Tetrahedron Asymmetry, 10, 4477–4480 (1999).

    Article  CAS  Google Scholar 

  • Glick, S. D., Haskew, R. E., Maisonneuve, I. M., Carlson, J. N., and Jerussi, T. P., Enantioselective behavioral effects of sibutramine metabolites. Eur. J. Pharmacol., 397, 93–102 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Hakala, K. S., Link, M., Szotakova, B., Skalova, L., Kostiainen, R., and Ketola, R. A., Characterization of metabolites of sibutramine in primary cultures of rat hepatocytes by liquid chromatography-ion trap mass spectrometry. Anal. Bioanal. Chem., 393, 1327–1336(2009).

    Article  PubMed  CAS  Google Scholar 

  • Link, M., Hakala, K. S., Wsol, V., Kostiainen, R., and Ketola, R. A., Metabolite profile of sibutramine in human urine: a liquid chromatography-electrospray ionization mass spectrometric study. J. Mass Spectrom., 41, 1171–1178 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Link, M., Novotná, R., Suchanová, B., Skálová, L., Wsól, V., and Szotáková, B., The stereoselective biotransformation of the anti-obesity drug sibutramine in rat liver microsomes and in primary cultures of rat hepatocytes. J. Pharm. Pharmacol., 57, 405–410 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Luscombe, G. P., Hopcroft, R. H., Thomas, P. C., and Buckett, W. R., The contribution of metabolites to the rapid and potent down-regulation of rat cortical beta-adrenoceptors by the putative antidepressant sibutramine hydrochloride. Neuropharmacology, 28, 129–134 (1989).

    Article  PubMed  CAS  Google Scholar 

  • Luque, C. A. and Rey, J. A., Sibutramine: a serotonin-norepinephrine reuptake-inhibitor for the treatment of obesity. Ann. Pharmacother., 33, 968–977 (1999).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kwang-il Kwon or Wonku Kang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noh, K., Bae, K., Min, B. et al. Enantioselective pharmacokinetics of sibutramine in rat. Arch. Pharm. Res. 33, 267–273 (2010). https://doi.org/10.1007/s12272-010-0212-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-010-0212-7

Key words

Navigation