Skip to main content
Log in

Oxidativer Stress, Eustress und Distress: H2O2 als Signalmolekül

  • Wissenschaft
  • Expert’s view: Redoxbiologie
  • Published:
BIOspektrum Aims and scope

Abstract

Redox reactions are linked to fundamental life processes. Recent research revealed a central role of hydrogen peroxide (H2O2) in redox regulation and oxidative stress responses. A physiological low level of H2O2 is essential in redox signaling, “oxidative eustress”, whereas supraphysiological H2O2 is detrimental, causing molecular damage, “oxidative distress”. Fine-tuning H2O2 steady-states in specific cell-types and subcellular organelles represents a challenge for a future redox medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. Selye H (1936) A syndrome produced by diverse nocuous agents. Nature 138: 32

    Article  Google Scholar 

  2. Sies H, Berndt C, Jones DP (2017) Oxidative stress. Annu Rev Biochem 86: 715–748

    Article  CAS  PubMed  Google Scholar 

  3. Sies H (1985) Oxidative stress: introductory remarks. In: Sies H (Hrsg.) Oxidative stress. Academic Press, London, 1–8

    Google Scholar 

  4. Sies H (2021) Oxidative eustress: on constant alert for redox homeostasis. Redox Biol 41: 101867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ursini F, Maiorino M, Forman HJ (2016) Redox homeostasis: the golden mean of healthy living. Redox Biol 8: 205–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rattan SI (2014) Molecular gerontology: from homeodynamics to hormesis. Curr Pharm Des 20: 3036–3039

    Article  CAS  PubMed  Google Scholar 

  7. Alleman RJ, Katunga LA, Nelson MA et al. (2014) The “Goldilocks Zone” from a redox perspective — adaptive vs. deleterious responses to oxidative stress in striated muscle. Front Physiol 5: 358

    Article  PubMed  PubMed Central  Google Scholar 

  8. Xiao W, Loscalzo J (2020) Metabolic responses to reductive stress. Antioxid Redox Signal 32: 1330–1347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jones DP, Sies H (2015) The redox code. Antioxid Redox Signal 23: 734–746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Santolini J, Wootton SA, Jackson AA, Feelisch M (2019) The redox architecture of physiological function. Curr Opin Physiol 9: 34–47

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sies H, Belousov VV, Chandel NS et al. (2022) Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology. Nat Rev Mol Cell Biol 23: 499–515

    Article  CAS  PubMed  Google Scholar 

  12. Marinho HS, Real C, Cyrne L et al. (2014) Hydrogen peroxide sensing, signaling and regulation of transcription factors. Redox Biol 2: 535–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Brigelius-Flohé R, Flohé L (2011) Basic principles and emerging concepts in the redox control of transcription factors. Antioxid Redox Signal 15: 2335–2381

    Article  PubMed  PubMed Central  Google Scholar 

  14. Sies H, Jones DP (2020) Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat Rev Mol Cell Biol 21: 363–383

    Article  CAS  PubMed  Google Scholar 

  15. Sies H (2017) Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: oxidative eustress. Redox Biol 11: 613–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cordeiro JV, Jacinto A (2013) The role of transcription-independent damage signals in the initiation of epithelial wound healing. Nat Rev Mol Cell Biol 14: 249–262

    Article  CAS  PubMed  Google Scholar 

  17. Forman HJ, Bernardo A, Davies KJ (2016) What is the concentration of hydrogen peroxide in blood and plasma? Arch Biochem Biophys 603: 48–53

    Article  CAS  PubMed  Google Scholar 

  18. Sies H, Chance B (1970) The steady state level of catalase compound I in isolated hemoglobin-free perfused rat liver. FEBS Lett 11: 172–176

    Article  CAS  PubMed  Google Scholar 

  19. Belousov VV, Fradkov AF, Lukyanov KA et al. (2006) Genetically encoded fluorescent indicator for intracellular hydrogen peroxide. Nat Methods 3: 281–286

    Article  CAS  PubMed  Google Scholar 

  20. Hoehne MN, Jacobs L, Lapacz KJ et al (2022) Spatial and temporal control of mitochondrial H2O2 release in intact human cells. EMBO J 41: e109169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Waldeck-Weiermair M, Yadav S, Spyropoulos F et al. (2021) Dissecting in vivo and in vitro redox responses using chemogenetics. Free Radic Biol Med 177: 360–369

    Article  CAS  PubMed  Google Scholar 

  22. Sobotta MC, Liou W, Stocker S et al. (2015) Peroxiredoxin-2 and STAT3 form a redox relay for H2O2 signaling. Nat Chem Biol 11: 64–70

    Article  CAS  PubMed  Google Scholar 

  23. Ferreira RB, Fu L, Jung Y, Yang J, Carroll KS (2022) Reaction-based fluorogenic probes for detecting protein cysteine oxidation in living cells. Nat Commun 13: 5522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Xiao H, Jedrychowski MP, Schweppe DK et al. (2020) A quantitative tissue-specific landscape of protein redox regulation during aging. Cell 180: 968–983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wensien M, von Pappenheim FR, Funk LM et al (2021) A lysine-cysteine redox switch with an NOS bridge regulates enzyme function. Nature 593: 460–464

    Article  CAS  PubMed  Google Scholar 

  26. Bazopoulou D, Knoefler D, Zheng Y et al. (2019) Developmental ROS individualizes organismal stress resistance and lifespan. Nature 576: 301–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nogales C, Mamdouh ZM, List M et al. (2022) Network pharmacology: curing causal mechanisms instead of treating symptoms. Trends Pharmacol Sci 43: 136–150

    Article  CAS  PubMed  Google Scholar 

  28. Murphy MP, Bayir H, Belousov V et al. (2022) Guidelines for measuring reactive oxygen species and oxidative damage in cells and in vivo. Nat Metab 4: 651–662

    Article  PubMed  Google Scholar 

  29. Frijhoff J, Winyard PG, Zarkovic N et al. (2015) Clinical relevance of biomarkers of oxidative stress. Antioxid Redox Signal 23: 1144–1170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Forman HJ, Zhang H (2021) Targeting oxidative stress in disease: promise and limitations of antioxidant therapy. Nat Rev Drug Discov 20: 689–709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cuadrado A, Rojo AI, Wells G et al (2019) Therapeutic targeting of the NRF2 and KEAP1 partnership in chronic diseases. Nat Rev Drug Discov 18: 295–317

    Article  CAS  PubMed  Google Scholar 

  32. Meng J, Lv Z, Zhang Y et al. (2021) Precision redox: the key for antioxidant pharmacology. Antioxid Redox Signal 34: 1069–1082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sies H (2020) Oxidative eustress and distress: Introductory remarks. In: Sies H (Hrsg.) Oxidative Stress: Eustress and distress. Academic Press, London, 3–12

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helmut Sies.

Additional information

Danksagung

Den Kollegen Johannes Herrmann, Wilhelm Stahl und Carsten Berndt danke ich herzlich für die wertvolle Diskussion.

Helmut Sies Studium generale (Leibniz-Kolleg) und Medizinstudium Tübingen, Sorbonne Paris, Frankreich, sowie LMU München. Promotion und Habilitation an der LMU. 1979–2007 o. Prof. Universität Düsseldorf. 2002–2005 Präsident NRW Akademie der Wissenschaften. Seit 2008 Prof. em. am Institut für Biochemie und Molekularbiologie I, Universität Düsseldorf und Senior Scientist am Leibniz-Institut für Umweltmedizinische Forschung, Düsseldorf. 2022 Ehrenmitglied der GBM.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sies, H. Oxidativer Stress, Eustress und Distress: H2O2 als Signalmolekül. Biospektrum 28, 685–690 (2022). https://doi.org/10.1007/s12268-022-1862-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12268-022-1862-y

Navigation