Skip to main content

Advertisement

Log in

The Role of ADAM17 in Inflammation-Related Atherosclerosis

  • Review
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Atherosclerosis is a chronic inflammatory disease that poses a huge economic burden due to its extremely poor prognosis. Therefore, it is necessary to explore potential mechanisms to improve the prevention and treatment of atherosclerosis. A disintegrin and metalloprotease 17 (ADAM17) is a cell membrane–bound protein that performs a range of functions through membrane protein shedding and intracellular signaling. ADAM17-mediated inflammation has been identified to be an important contributor to atherosclerosis; however, the specific relationship between its multiple regulatory roles and the pathogenesis of atherosclerosis remains unclear. Here, we reviewed the activation, function, and regulation of ADAM17, described in detail the role of ADAM17-mediated inflammatory damage in atherosclerosis, and discussed several controversial points. We hope that these insights into ADAM17 biology will lead to rational management of atherosclerosis.

Graphical abstract

ADAM17 promotes vascular inflammation in endothelial cells, smooth muscle cells, and macrophages, and regulates the occurrence and development of atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ADAM17:

A disintegrin and metalloprotease 17

CSF-1:

Colony-stimulating factor 1

EC:

Endothelial cell

ECAM:

Endothelial cell adhesion molecules

EGFR:

Epidermal growth factor receptor

EMCN:

Endomucin

ER:

Endoplasmic reticulum

ICAM-1:

Intercellular adhesion molecule-1

IL:

Interleukin

ERK:

Extracellular signal–regulated kinases

IL-6R:

IL-6 receptors

iRhom2:

Inactivated rhomboid protein 2

MAPK:

Mitogen-activated protein kinase

MerTK:

Mer tyrosine kinase

MI:

Myocardial infarction

mTNF-α:

Membrane-bound TNF-α

NSAIDS:

Nonsteroidal anti-inflammatory drugs

PDGFR-β:

Platelet-derived growth factor receptor β

RPTK:

Receptor protein tyrosine kinase

SMCs:

Smooth muscle cells

sgp130:

Soluble gp130

sIL-6R:

Soluble IL-6R

sTNF-α:

Soluble TNF-α

TIMP3:

Tissue inhibitor of metalloproteinase 3

TGF:

Transforming growth factor

TNF-α:

Tumor necrosis factor-α

TNFR:

TNF-α receptor

VCAM-1:

Vascular cell adhesion molecule-1

VSMCs:

Vascular smooth muscle cells

Zn-BR:

Zinc-binding region

CX3CL1:

Fractalkine

MMP:

Matrix metalloproteinases

VEGF:

Vascular endothelial growth factor

References

  1. Wei, S., Wang, H., Zhang, G., Lu, Y., An, X., Ren, S., Wang, Y., Chen, Y., White, J. G., Zhang, C., et al. (2013). Platelet IκB kinase-β deficiency increases mouse arterial neointima formation via delayed glycoprotein Ibα shedding. Arteriosclerosis, Thrombosis, and Vascular Biology, 33, 241–248. https://doi.org/10.1161/ATVBAHA.112.300781

    Article  CAS  Google Scholar 

  2. Zhang, Y., Wang, Y., Zhou, D., Zhang, L. S., Deng, F. X., Shu, S., Wang, L. J., Wu, Y., Guo, N., Zhou, J., & Yuan, Z. Y. (2019). Angiotensin II deteriorates advanced atherosclerosis by promoting MerTK cleavage and impairing efferocytosis through the AT(1)R/ROS/p38 MAPK/ADAM17 pathway. American Journal of Physiology-Cell Physiology, 317, C776-C787. https://doi.org/10.1152/ajpcell.00145.2019

    Article  Google Scholar 

  3. Couchie, D., Vaisman, B., Abderrazak, A., Mahmood, D. F. D., Hamza, M. M., Canesi, F., Diderot, V., El Hadri, K., Nègre-Salvayre, A., Le Page, A., et al. (2017). Human plasma Thioredoxin-80 increases with age and in ApoE(-/-) mice induces inflammation, angiogenesis, and atherosclerosis. Circulation, 136, 464–475. https://doi.org/10.1161/CIRCULATIONAHA.117.027612

    Article  CAS  Google Scholar 

  4. Gooz, M. (2010). ADAM-17: The enzyme that does it all. Critical Reviews in Biochemistry and Molecular Biology, 45, 146–169. https://doi.org/10.3109/10409231003628015

    Article  CAS  Google Scholar 

  5. Donners, M. M., Wolfs, I. M., Olieslagers, S., Mohammadi-Motahhari, Z., Tchaikovski, V., Heeneman, S., van Buul, J. D., Caolo, V., Molin, D. G., Post, M. J., & Waltenberger, J. (2010). A disintegrin and metalloprotease 10 is a novel mediator of vascular endothelial growth factor-induced endothelial cell function in angiogenesis and is associated with atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 30, 2188–2195. https://doi.org/10.1161/ATVBAHA.110.213124

    Article  CAS  Google Scholar 

  6. de Queiroz, T. M., Lakkappa, N., & Lazartigues, E. (2020). ADAM17-mediated shedding of inflammatory cytokines in hypertension. Frontiers in Pharmacology, 11, 1154. https://doi.org/10.3389/fphar.2020.01154

    Article  Google Scholar 

  7. Adrain, C., & Freeman, M. (2012). New lives for old: Evolution of pseudoenzyme function illustrated by iRhoms. Nature Reviews Molecular Cell Biology, 13, 489–498. https://doi.org/10.1038/nrm3392

    Article  CAS  Google Scholar 

  8. Dreymueller, D., Pruessmeyer, J., Groth, E., & Ludwig, A. (2012). The role of ADAM-mediated shedding in vascular biology. European Journal of Cell Biology, 91, 472–485. https://doi.org/10.1016/j.ejcb.2011.09.003

    Article  CAS  Google Scholar 

  9. Badenes, M., & Adrain, C. (2019). iRhom2 and TNF: Partners or enemies? Science Signaling, 12, 605, eaaz0444. https://doi.org/10.1126/scisignal.aaz0444

  10. Patel, I. R., Attur, M. G., Patel, R. N., Stuchin, S. A., Abagyan, R. A., Abramson, S. B., & Amin, A. R. (1998). TNF-alpha convertase enzyme from human arthritis-affected cartilage: Isolation of cDNA by differential display, expression of the active enzyme, and regulation of TNF-alpha. The Journal of Immunology, 160, 4570–4579.

    CAS  Google Scholar 

  11. Ohtsu, H., Dempsey, P. J., & Eguchi, S. (2006). ADAMs as mediators of EGF receptor transactivation by G protein-coupled receptors. American Journal of Physiology-Cell Physiology, 291, C1-10. https://doi.org/10.1152/ajpcell.00620.2005

    Article  CAS  Google Scholar 

  12. Xu, P., & Derynck, R. (2010). Direct activation of TACE-mediated ectodomain shedding by p38 MAP kinase regulates EGF receptor-dependent cell proliferation. Molecular Cell, 37, 551–566. https://doi.org/10.1016/j.molcel.2010.01.034.

    Article  CAS  Google Scholar 

  13. Niu, A., Wang, B., & Li, Y. P. (2015). TNFα shedding in mechanically stressed cardiomyocytes is mediated by Src activation of TACE. Journal of Cellular Biochemistry, 116, 559–565. https://doi.org/10.1002/jcb.25006.

    Article  CAS  Google Scholar 

  14. Milla, M. E., Leesnitzer, M. A., Moss, M. L., Clay, W. C., Carter, H. L., Miller, A. B., Su, J. L., Lambert, M. H., Willard, D. H., Sheeley, D. M., et al. (1999). Specific sequence elements are required for the expression of functional tumor necrosis factor-alpha-converting enzyme (TACE). Journal of Biological Chemistry, 274, 30563–30570. https://doi.org/10.1074/jbc.274.43.30563

    Article  CAS  Google Scholar 

  15. Maskos, K., Fernandez-Catalan, C., Huber, R., Bourenkov, G. P., Bartunik, H., Ellestad, G. A., Reddy, P., Wolfson, M. F., Rauch, C. T., Castner, B. J., et al. (1998). Crystal structure of the catalytic domain of human tumor necrosis factor-alpha-converting enzyme. Proceedings of the National Academy of Sciences of the United States of America, 95, 3408–3412. https://doi.org/10.1073/pnas.95.7.3408

    Article  CAS  Google Scholar 

  16. Zhang, P., Shen, M., Fernandez-Patron, C., & Kassiri, Z. (2016). ADAMs family and relatives in cardiovascular physiology and pathology. Journal of Molecular and Cellular Cardiology, 93, 186–199. https://doi.org/10.1016/j.yjmcc.2015.10.031

    Article  CAS  Google Scholar 

  17. Li, N., Boyd, K., Dempsey, P. J., & Vignali, D. A. (2007). Non-cell autonomous expression of TNF-alpha-converting enzyme ADAM17 is required for normal lymphocyte development. The Journal of Immunology, 178, 4214–4221. https://doi.org/10.4049/jimmunol.178.7.4214

    Article  CAS  Google Scholar 

  18. Fan, H., & Derynck, R. (1999). Ectodomain shedding of TGF-alpha and other transmembrane proteins is induced by receptor tyrosine kinase activation and MAP kinase signaling cascades. EMBO Journal, 18, 6962–6972. https://doi.org/10.1093/emboj/18.24.6962

    Article  CAS  Google Scholar 

  19. Gechtman, Z., Alonso, J. L., Raab, G., Ingber, D. E., & Klagsbrun, M. (1999). The shedding of membrane-anchored heparin-binding epidermal-like growth factor is regulated by the Raf/mitogen-activated protein kinase cascade and by cell adhesion and spreading. Journal of Biological Chemistry, 274, 28828–28835. https://doi.org/10.1074/jbc.274.40.28828

    Article  CAS  Google Scholar 

  20. Kahn, J., Walcheck, B., Migaki, G. I., Jutila, M. A., & Kishimoto, T. K. (1998). Calmodulin regulates L-selectin adhesion molecule expression and function through a protease-dependent mechanism. Cell, 92, 809–818. https://doi.org/10.1016/s0092-8674(00)81408-7

    Article  CAS  Google Scholar 

  21. Reddy, P., Slack, J. L., Davis, R., Cerretti, D. P., Kozlosky, C. J., Blanton, R. A., Shows, D., Peschon, J. J., & Black, R. A. (2000). Functional analysis of the domain structure of tumor necrosis factor-alpha converting enzyme. Journal of Biological Chemistry, 275, 14608–14614. https://doi.org/10.1074/jbc.275.19.14608

    Article  CAS  Google Scholar 

  22. Fan, H., Turck, C. W., & Derynck, R. (2003). Characterization of growth factor-induced serine phosphorylation of tumor necrosis factor-alpha converting enzyme and of an alternatively translated polypeptide. Journal of Biological Chemistry, 278, 18617–18627. https://doi.org/10.1074/jbc.M300331200

    Article  CAS  Google Scholar 

  23. Gonzales, P. E., Solomon, A., Miller, A. B., Leesnitzer, M. A., Sagi, I., & Milla, M. E. (2004). Inhibition of the tumor necrosis factor-alpha-converting enzyme by its pro domain. Journal of Biological Chemistry, 279, 31638–31645. https://doi.org/10.1074/jbc.M401311200

    Article  CAS  Google Scholar 

  24. Li, X., & Fan, H. (2004). Loss of ectodomain shedding due to mutations in the metalloprotease and cysteine-rich/disintegrin domains of the tumor necrosis factor-alpha converting enzyme (TACE). Journal of Biological Chemistry, 279, 27365–27375. https://doi.org/10.1074/jbc.M401690200

    Article  CAS  Google Scholar 

  25. Black, R. A., Rauch, C. T., Kozlosky, C. J., Peschon, J. J., Slack, J. L., Wolfson, M. F., Castner, B. J., Stocking, K. L., Reddy, P., Srinivasan, S., et al. (1997). A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells. Nature, 385, 729–733. https://doi.org/10.1038/385729a0

    Article  CAS  Google Scholar 

  26. Itai, T., Tanaka, M., & Nagata, S. (2001). Processing of tumor necrosis factor by the membrane-bound TNF-alpha-converting enzyme, but not its truncated soluble form. European Journal of Biochemistry, 268, 2074–2082. https://doi.org/10.1046/j.1432-1327.2001.02085.x

    Article  CAS  Google Scholar 

  27. Moss, M. L., Jin, S. L., Milla, M. E., Bickett, D. M., Burkhart, W., Carter, H. L., Chen, W. J., Clay, W. C., Didsbury, J. R., Hassler, D., et al. (1997). Cloning of a disintegrin metalloproteinase that processes precursor tumour-necrosis factor-alpha. Nature, 385, 733–736. https://doi.org/10.1038/385733a0

    Article  CAS  Google Scholar 

  28. Yang, J., LeBlanc, M. E., Cano, I., Saez-Torres, K. L., Saint-Geniez, M., Ng, Y. S., & D’Amore, P. A. (2020). ADAM10 and ADAM17 proteases mediate proinflammatory cytokine-induced and constitutive cleavage of endomucin from the endothelial surface. Journal of Biological Chemistry, 295, 6641–6651. https://doi.org/10.1074/jbc.RA119.011192

    Article  CAS  Google Scholar 

  29. Shen, M., Morton, J., Davidge, S. T., & Kassiri, Z. (2017). Loss of smooth muscle cell disintegrin and metalloproteinase 17 transiently suppresses angiotensin II-induced hypertension and end-organ damage. Journal of Molecular and Cellular Cardiology, 103, 11–21. https://doi.org/10.1016/j.yjmcc.2016.12.001

    Article  CAS  Google Scholar 

  30. Groth, E., Pruessmeyer, J., Babendreyer, A., Schumacher, J., Pasqualon, T., Dreymueller, D., Higashiyama, S., Lorenzen, I., Grötzinger, J., Cataldo, D., & Ludwig, A. (2016). Stimulated release and functional activity of surface expressed metalloproteinase ADAM17 in exosomes. Biochimica et Biophysica Acta, 1863, 2795–2808. https://doi.org/10.1016/j.bbamcr.2016.09.002

    Article  CAS  Google Scholar 

  31. Geesala, R., Issuree, P. D., & Maretzky, T. (2020). The role of iRhom2 in metabolic and cardiovascular-related disorders. Frontiers in Cardiovascular Medicine, 7, 612808. https://doi.org/10.3389/fcvm.2020.612808

    Article  CAS  Google Scholar 

  32. Wiley, H. S., Woolf, M. F., Opresko, L. K., Burke, P. M., Will, B., Morgan, J. R., & Lauffenburger, D. A. (1998). Removal of the membrane-anchoring domain of epidermal growth factor leads to intracrine signaling and disruption of mammary epithelial cell organization. Journal of Cell Biology, 143, 1317–1328. https://doi.org/10.1083/jcb.143.5.1317

    Article  CAS  Google Scholar 

  33. Borrell-Pagès, M., Rojo, F., Albanell, J., Baselga, J., & Arribas, J. (2003). TACE is required for the activation of the EGFR by TGF-alpha in tumors. EMBO Journal, 22, 1114–1124. https://doi.org/10.1093/emboj/cdg111

    Article  Google Scholar 

  34. Galazka, G., Windsor, L. J., Birkedal-Hansen, H., & Engler, J. A. (1996). APMA (4-aminophenylmercuric acetate) activation of stromelysin-1 involves protein interactions in addition to those with cysteine-75 in the propeptide. Biochemistry, 35, 11221–11227. https://doi.org/10.1021/bi960618e

    Article  CAS  Google Scholar 

  35. Van Wart, H. E., & Birkedal-Hansen, H. (1990). The cysteine switch: A principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family. Proceedings of the National Academy of Sciences U S A, 87, 5578–5582. https://doi.org/10.1073/pnas.87.14.5578

    Article  Google Scholar 

  36. Roghani, M., Becherer, J. D., Moss, M. L., Atherton, R. E., Erdjument-Bromage, H., Arribas, J., Blackburn, R. K., Weskamp, G., Tempst, P., & Blobel, C. P. (1999). Metalloprotease-disintegrin MDC9: Intracellular maturation and catalytic activity. Journal of Biological Chemistry, 274, 3531–3540. https://doi.org/10.1074/jbc.274.6.3531

    Article  CAS  Google Scholar 

  37. Reiss, K., & Saftig, P. (2009). The “a disintegrin and metalloprotease” (ADAM) family of sheddases: Physiological and cellular functions. Seminars in Cell & Developmental Biology, 20, 126–137. https://doi.org/10.1016/j.semcdb.2008.11.002

    Article  CAS  Google Scholar 

  38. Amour, A., Knight, C. G., Webster, A., Slocombe, P. M., Stephens, P. E., Knäuper, V., Docherty, A. J., & Murphy, G. (2000). The in vitro activity of ADAM-10 is inhibited by TIMP-1 and TIMP-3. FEBS Letters, 473, 275–279. https://doi.org/10.1016/s0014-5793(00)01528-3

    Article  CAS  Google Scholar 

  39. Black, R. A. (2004). TIMP3 checks inflammation. Nature Genetics, 36, 934–935. https://doi.org/10.1038/ng0904-934

    Article  CAS  Google Scholar 

  40. Zheng, Y., Schlondorff, J., & Blobel, C. P. (2002). Evidence for regulation of the tumor necrosis factor alpha-convertase (TACE) by protein-tyrosine phosphatase PTPH1. Journal of Biological Chemistry, 277, 42463–42470. https://doi.org/10.1074/jbc.M207459200

    Article  CAS  Google Scholar 

  41. Stöhr, R., Cavalera, M., Menini, S., Mavilio, M., Casagrande, V., Rossi, C., Urbani, A., Cardellini, M., Pugliese, G., Menghini, R., & Federici, M. (2014). Loss of TIMP3 exacerbates atherosclerosis in ApoE null mice. Atherosclerosis, 235, 438–443. https://doi.org/10.1016/j.atherosclerosis.2014.05.946

    Article  Google Scholar 

  42. Federici, M., Hribal, M. L., Menghini, R., Kanno, H., Marchetti, V., Porzio, O., Sunnarborg, S. W., Rizza, S., Serino, M., Cunsolo, V., et al. (2005). Timp3 deficiency in insulin receptor-haploinsufficient mice promotes diabetes and vascular inflammation via increased TNF-alpha. The Journal of Clinical Investigation, 115, 3494–3505. https://doi.org/10.1172/JCI26052

    Article  CAS  Google Scholar 

  43. Guinea-Viniegra, J., Zenz, R., Scheuch, H., Hnisz, D., Holcmann, M., Bakiri, L., Schonthaler, H. B., Sibilia, M., & Wagner, E. F. (2009). TNFalpha shedding and epidermal inflammation are controlled by Jun proteins. Genes & Development, 23, 2663–2674. https://doi.org/10.1101/gad.543109

    Article  CAS  Google Scholar 

  44. Basu, R., Fan, D., Kandalam, V., Lee, J., Das, S. K., Wang, X., Baldwin, T. A., Oudit, G. Y., & Kassiri, Z. (2012). Loss of Timp3 gene leads to abdominal aortic aneurysm formation in response to angiotensin II. Journal of Biological Chemistry, 287, 44083–44096. https://doi.org/10.1074/jbc.M112.425652

    Article  CAS  Google Scholar 

  45. Soond, S. M., Everson, B., Riches, D. W., & Murphy, G. (2005). ERK-mediated phosphorylation of Thr735 in TNFalpha-converting enzyme and its potential role in TACE protein trafficking. Journal of Cell Science, 118, 2371–2380. https://doi.org/10.1242/jcs.02357

    Article  CAS  Google Scholar 

  46. Mendelson, K., Swendeman, S., Saftig, P., & Blobel, C. P. (2010). Stimulation of platelet-derived growth factor receptor beta (PDGFRbeta) activates ADAM17 and promotes metalloproteinase-dependent cross-talk between the PDGFRbeta and epidermal growth factor receptor (EGFR) signaling pathways. Journal of Biological Chemistry, 285, 25024–25032. https://doi.org/10.1074/jbc.M110.102566

    Article  CAS  Google Scholar 

  47. Li, R., Wang, T., Walia, K., Gao, B., & Krepinsky, J. C. (2018). Regulation of profibrotic responses by ADAM17 activation in high glucose requires its C-terminus and FAK. Journal of Cell Science, 131, jcs208629. https://doi.org/10.1242/jcs.208629

  48. Siddharth, S., Nayak, A., Das, S., Nayak, D., Panda, J., Wyatt, M. D., & Kundu, C. N. (2018). The soluble nectin-4 ecto-domain promotes breast cancer induced angiogenesis via endothelial Integrin-β4. International Journal of Biochemistry & Cell Biology, 102, 151–160. https://doi.org/10.1016/j.biocel.2020.105860

    Article  CAS  Google Scholar 

  49. Ding, X. F., Liang, H. Y., Sun, J. Y., Liu, S. H., Kan, Q. C., Wang, L. X., & Sun, T. W. (2019). Adipose-derived mesenchymal stem cells ameliorate the inflammatory reaction in CLP-induced septic acute lung injury rats via sTNFR1. Journal of Cellular Physiology, 234, 16582–16591. https://doi.org/10.1002/jcp.28329

  50. Wang, H., Yuan, R., Cao, Q., Wang, M., Ren, D., Huang, X., Wu, M., Zhang, L., Zhao, X., Huo, X., et al. (2020). Astragaloside III activates TACE/ADAM17-dependent anti-inflammatory and growth factor signaling in endothelial cells in a p38-dependent fashion. Phytotherapy Research, 34, 1096–1107. https://doi.org/10.1002/ptr.6603

    Article  CAS  Google Scholar 

  51. Szondy, Z., & Pallai, A. (2017). Transmembrane TNF-alpha reverse signaling leading to TGF-beta production is selectively activated by TNF targeting molecules: Therapeutic implications. Pharmacological Research, 115, 124–132. https://doi.org/10.1016/j.phrs.2016.11.025

    Article  CAS  Google Scholar 

  52. Li, C., Gu, H., Yu, M., Yang, P., Zhang, M., Ba, H., Yin, Y., Wang, J., Yin, B., Zhou, X., & Li, Z. (2019). Inhibition of transmembrane TNF-α shedding by a specific antibody protects against septic shock. Cell Death & Disease, 10, 586. https://doi.org/10.1038/s41419-019-1808-6

    Article  Google Scholar 

  53. He, B., Li, X., Hu, T., Lian, W., & Zhang, M. (2017). Construction of a lentiviral vector containing shRNA targeting ADAM17 and its role in attenuating endotoxemia in mice. Molecular Medicine Reports, 16, 6013–6019. https://doi.org/10.3892/mmr.2017.7307

    Article  CAS  Google Scholar 

  54. Wajant, H., Pfizenmaier, K., & Scheurich, P. (2003). Tumor necrosis factor signaling. Cell Death and Differentiation, 10, 45–65. https://doi.org/10.1038/sj.cdd.4401189

    Article  CAS  Google Scholar 

  55. Kotyla, P. J. (2018). Bimodal function of anti-TNF treatment: shall we be concerned about anti-TNF treatment in patients with rheumatoid arthritis and heart failure? International Journal of Molecular Sciences, 19, 1739. https://doi.org/10.3390/ijms19061739

  56. Arenas, Y. M., Cabrera-Pastor, A., Juciute, N., Mora-Navarro, E., & Felipo, V. (2020). Blocking glycine receptors reduces neuroinflammation and restores neurotransmission in cerebellum through ADAM17-TNFR1-NF-κβ pathway. Journal of Neuroinflammation, 17, 269. https://doi.org/10.1186/s12974-020-01941-y

    Article  CAS  Google Scholar 

  57. Nicolaou, A., Zhao, Z., Northoff, B. H., Sass, K., Herbst, A., Kohlmaier, A., Chalaris, A., Wolfrum, C., Weber, C., Steffens, S., et al. (2017). Adam17 deficiency promotes atherosclerosis by enhanced TNFR2 signaling in mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 37, 247–257. https://doi.org/10.1161/ATVBAHA.116.308682

    Article  CAS  Google Scholar 

  58. Medler, J., & Wajant, H. (2019). Tumor necrosis factor receptor-2 (TNFR2): An overview of an emerging drug target. Expert Opinion on Therapeutic Targets, 23, 295–307. https://doi.org/10.1080/14728222.2019.1586886

    Article  CAS  Google Scholar 

  59. Sharma, D., Malik, A., Guy, C., Vogel, P., & Kanneganti, T. D. (2019). TNF/TNFR axis promotes pyrin inflammasome activation and distinctly modulates pyrin inflammasomopathy. The Journal of Clinical Investigation, 129, 150–162. https://doi.org/10.1172/JCI121372

    Article  Google Scholar 

  60. Düsterhöft, S., Lokau, J., & Garbers, C. (2019). The metalloprotease ADAM17 in inflammation and cancer. Pathology, Research and Practice, 215, 152410. https://doi.org/10.1016/j.prp.2019.04.002

    Article  Google Scholar 

  61. Schumacher, N., & Rose-John, S. (2019). ADAM17 Activity and IL-6 Trans-Signaling in Inflammation and Cancer. Cancers, 11, 1736. https://doi.org/10.3390/cancers11111736

  62. Saad, M. I., Alhayyani, S., McLeod, L., Yu, L., Alanazi, M., Deswaerte, V., Tang, K., Jarde, T., Smith, J. A., Prodanovic, Z., et al. (2019). ADAM17 selectively activates the IL-6 trans-signaling/ERK MAPK axis in KRAS-addicted lung cancer. EMBO Molecular Medicine, 11, e9976. https://doi.org/10.15252/emmm.201809976

  63. Zegeye, M. M., Lindkvist, M., Fälker, K., Kumawat, A. K., Paramel, G., Grenegård, M., Sirsjö, A., & Ljungberg, L. U. (2018). Activation of the JAK/STAT3 and PI3K/AKT pathways are crucial for IL-6 trans-signaling-mediated pro-inflammatory response in human vascular endothelial cells. Cell Communication and Signaling: CCS, 16, 55. https://doi.org/10.1186/s12964-018-0268-4

    Article  Google Scholar 

  64. Wimmer, R. A., Leopoldi, A., Aichinger, M., Kerjaschki, D., & Penninger, J. M. (2019). Generation of blood vessel organoids from human pluripotent stem cells. Nature Protocols, 14, 3082–3100. https://doi.org/10.1038/s41596-019-0213-z

    Article  CAS  Google Scholar 

  65. Mishra, H. K., Ma, J., & Walcheck, B. (2017). Ectodomain shedding by ADAM17: Its role in neutrophil recruitment and the impairment of this process during sepsis. Frontiers in Cellular and Infection Microbiology, 7, 138. https://doi.org/10.3389/fcimb.2017.00138

    Article  Google Scholar 

  66. Shalaby, L., Thounaojam, M., Tawfik, A., Li, J., Hussein, K., Jahng, W. J., Al-Shabrawey, M., Kwok, H. F., Bartoli, M., & Gutsaeva, D. (2020). Role of Endothelial ADAM17 in Early Vascular Changes Associated with Diabetic Retinopathy. Journal of Clinical Medicine, 9, 400. https://doi.org/10.3390/jcm9020400

  67. Lian, G., Li, X., Zhang, L., Zhang, Y., Sun, L., Zhang, X., Liu, H., Pang, Y., Kong, W., Zhang, T., et al. (2019). Macrophage metabolic reprogramming aggravates aortic dissection through the HIF1α-ADAM17 pathway(✰). eBioMedicine, 49, 291–304. https://doi.org/10.1016/j.ebiom.2019.09.041

    Article  Google Scholar 

  68. Zeng, S. Y., Yang, L., Hong, C. L., Lu, H. Q., Yan, Q. J., Chen, Y., & Qin, X. P. (2018). Evidence that ADAM17 mediates the protective action of CGRP against angiotensin II-induced inflammation in vascular smooth muscle cells. Mediators of Inflammation, 2018, 2109352. https://doi.org/10.1155/2018/2109352

    Article  Google Scholar 

  69. Shen, M., Hu, M., Fedak, P. W. M., Oudit, G. Y., & Kassiri, Z. (2018). Cell-specific functions of ADAM17 regulate the progression of thoracic aortic aneurysm. Circulation Research, 123, 372–388. https://doi.org/10.1161/CIRCRESAHA.118.313181

    Article  CAS  Google Scholar 

  70. Gebremariam, H. G., Qazi, K. R., Somiah, T., Pathak, S. K., Sjölinder, H., Sverremark Ekström, E., & Jonsson, A. B. (2019). Lactobacillus gasseri suppresses the production of proinflammatory cytokines in Helicobacter pylori-infected macrophages by inhibiting the expression of ADAM17. Frontiers in Immunology, 10, 2326. https://doi.org/10.3389/fimmu.2019.02326

    Article  CAS  Google Scholar 

  71. Zhou, C., Qin, Y., Chen, R., Gao, F., Zhang, J., & Lu, F. (2020). Fenugreek attenuates obesity-induced inflammation and improves insulin resistance through downregulation of iRhom2/TACE. Life Sciences, 258, 118222. https://doi.org/10.1016/j.lfs.2020.118222

    Article  CAS  Google Scholar 

  72. Mishra, H. K., Ma, J., Mendez, D., Hullsiek, R., Pore, N., & Walcheck, B. (2020). Blocking ADAM17 Function with a Monoclonal Antibody Improves Sepsis Survival in a Murine Model of Polymicrobial Sepsis. International Journal of Molecular Sciences, 21, 6688. https://doi.org/10.3390/ijms21186688

  73. Wang, Y., Chen, L., Tian, Z., Shen, X., Wang, X., Wu, H., Wang, Y., Zou, J., & Liang, J. (2018). CRISPR-Cas9 mediated gene knockout in human coronary artery endothelial cells reveals a pro-inflammatory role of TLR2. Cell Biology International, 42, 187–193. https://doi.org/10.1002/cbin.10885

    Article  CAS  Google Scholar 

  74. Mao, C., Li, D., Zhou, E., Zhang, J., Wang, C., & Xue, C. (2021). Nicotine exacerbates atherosclerosis through a macrophage-mediated endothelial injury pathway. Aging (Albany NY), 13, 7627–7643. https://doi.org/10.18632/aging.202660

    Article  CAS  Google Scholar 

  75. Hannemann, C., Schecker, J. H., Brettschneider, A., Grune, J., Rösener, N., Weller, A., Stangl, V., Fisher, E. A., Stangl, K., Ludwig, A., & Hewing, B. (2022). Deficiency of inactive rhomboid protein 2 (iRhom2) attenuates diet-induced hyperlipidaemia and early atherogenesis. Cardiovascular Research, 118, 156–168. https://doi.org/10.1093/cvr/cvab041

    Article  CAS  Google Scholar 

  76. Tang, J., Frey, J. M., Wilson, C. L., Moncada-Pazos, A., Levet, C., Freeman, M., Rosenfeld, M. E., Stanley, E. R., Raines, E. W., & Bornfeldt, K. E. (2018). Neutrophil and Macrophage Cell Surface Colony-Stimulating Factor 1 Shed by ADAM17 Drives Mouse Macrophage Proliferation in Acute and Chronic Inflammation. Molecular and Cellular Biology, 38, e00103–18. https://doi.org/10.1128/MCB.00103-18

  77. Sakamuri, S., Higashi, Y., Sukhanov, S., Siddesha, J. M., Delafontaine, P., Siebenlist, U., & Chandrasekar, B. (2016). TRAF3IP2 mediates atherosclerotic plaque development and vulnerability in ApoE(-/-) mice. Atherosclerosis, 252, 153–160. https://doi.org/10.1016/j.atherosclerosis.2016.05.029

    Article  CAS  Google Scholar 

  78. Jia, Y., & Kong, W. (2017). ADAM17: A molecular switch to control TNFR2 during atherogenesis in vivo. Arteriosclerosis, Thrombosis, and Vascular Biology, 37, 176–178. https://doi.org/10.1161/ATVBAHA.116.308840

    Article  CAS  Google Scholar 

  79. Rizza, S., Copetti, M., Cardellini, M., Menghini, R., Pecchioli, C., Luzi, A., Di Cola, G., Porzio, O., Ippoliti, A., Romeo, F., et al. (2015). A score including ADAM17 substrates correlates to recurring cardiovascular event in subjects with atherosclerosis. Atherosclerosis, 239, 459–464. https://doi.org/10.1016/j.atherosclerosis.2015.01.029

    Article  Google Scholar 

  80. Canault, M., Leroyer, A. S., Peiretti, F., Lesèche, G., Tedgui, A., Bonardo, B., Alessi, M. C., Boulanger, C. M., & Nalbone, G. (2007). Microparticles of human atherosclerotic plaques enhance the shedding of the tumor necrosis factor-alpha converting enzyme/ADAM17 substrates, tumor necrosis factor and tumor necrosis factor receptor-1. American Journal of Pathology, 171, 1713–1723. https://doi.org/10.2353/ajpath.2007.070021

    Article  CAS  Google Scholar 

  81. Ruparelia, N., & Choudhury, R. (2020). Inflammation and atherosclerosis: What is on the horizon? Heart, 106, 80–85. https://doi.org/10.1136/heartjnl-2018-314230

    Article  CAS  Google Scholar 

  82. Speck, N., Brandsch, C., Schmidt, N., Yazdekhasti, N., Hirche, F., Lucius, R., Rimbach, G., Stangl, G. I., & Reiss, K. (2015). The antiatherogenic effect of fish oil in male mice is associated with a diminished release of endothelial ADAM17 and ADAM10 substrates. Journal of Nutrition, 145, 1218–1226. https://doi.org/10.3945/jn.115.211375

    Article  CAS  Google Scholar 

  83. Liao, J., An, X., Yang, X., Lin, Q. Y., Liu, S., Xie, Y., Bai, J., Xia, Y. L., & Li, H. H. (2020). Deficiency of LMP10 attenuates diet-induced atherosclerosis by inhibiting macrophage polarization and inflammation in apolipoprotein E deficient mice. Frontiers in Cell Developmental Biology, 8, 592048. https://doi.org/10.3389/fcell.2020.592048

    Article  Google Scholar 

  84. Canault, M., Peiretti, F., Kopp, F., Bonardo, B., Bonzi, M. F., Coudeyre, J. C., Alessi, M. C., Juhan-Vague, I., & Nalbone, G. (2006). The TNF alpha converting enzyme (TACE/ADAM17) is expressed in the atherosclerotic lesions of apolipoprotein E-deficient mice: Possible contribution to elevated plasma levels of soluble TNF alpha receptors. Atherosclerosis, 187, 82–91. https://doi.org/10.1016/j.atherosclerosis.2005.08.031

    Article  CAS  Google Scholar 

  85. Zhao, X., Kong, J., Zhao, Y., Wang, X., Bu, P., Zhang, C., & Zhang, Y. (2015). Gene silencing of TACE enhances plaque stability and improves vascular remodeling in a rabbit model of atherosclerosis. Science and Reports, 5, 17939. https://doi.org/10.1038/srep17939

    Article  CAS  Google Scholar 

  86. Beldman, T. J., Senders, M. L., Alaarg, A., Pérez-Medina, C., Tang, J., Zhao, Y., Fay, F., Deichmöller, J., Born, B., Desclos, E., et al. (2017). Hyaluronan nanoparticles selectively target plaque-associated macrophages and improve plaque stability in atherosclerosis. ACS Nano, 11, 5785–5799. https://doi.org/10.1021/acsnano.7b01385

    Article  CAS  Google Scholar 

  87. Grootaert, M. O. J., Moulis, M., Roth, L., Martinet, W., Vindis, C., Bennett, M. R., & De Meyer, G. R. Y. (2018). Vascular smooth muscle cell death, autophagy and senescence in atherosclerosis. Cardiovascular Research, 114, 622–634. https://doi.org/10.1093/cvr/cvy007

    Article  CAS  Google Scholar 

  88. Wang, L., Chen, Q., Ke, D., & Li, G. (2017). Ghrelin inhibits atherosclerotic plaque angiogenesis and promotes plaque stability in a rabbit atherosclerotic model. Peptides, 90, 17–26. https://doi.org/10.1016/j.peptides.2017.01.013

    Article  CAS  Google Scholar 

  89. Li, Z., Wang, Y., Wu, X., Liu, X., Huang, S., He, Y., Liu, S., & Ren, L. (2020). Studying the factors of human carotid atherosclerotic plaque rupture, by calculating stress/strain in the plaque, based on CEUS images: A numerical study. Frontiers in Neuroinformatics, 14, 596340. https://doi.org/10.3389/fninf.2020.596340

    Article  Google Scholar 

  90. Caolo, V., Swennen, G., Chalaris, A., Wagenaar, A., Verbruggen, S., Rose-John, S., Molin, D. G., Vooijs, M., & Post, M. J. (2015). ADAM10 and ADAM17 have opposite roles during sprouting angiogenesis. Angiogenesis, 18, 13–22. https://doi.org/10.1007/s10456-014-9443-4

    Article  CAS  Google Scholar 

  91. Oksala, N., Levula, M., Airla, N., Pelto-Huikko, M., Ortiz, R. M., Järvinen, O., Salenius, J. P., Ozsait, B., Komurcu-Bayrak, E., Erginel-Unaltuna, N., et al. (2009). ADAM-9, ADAM-15, and ADAM-17 are upregulated in macrophages in advanced human atherosclerotic plaques in aorta and carotid and femoral arteries–Tampere vascular study. Annals of Medicine, 41, 279–290. https://doi.org/10.1080/07853890802649738

    Article  CAS  Google Scholar 

  92. Poteshkina, N. G., Kovalevskaya, E. A., Krylova, N. S., & Fettser, D. V. (2019). Myocardial ischemia in patients with hypertrophic cardiomyopathy. Probl Sotsialnoi Gig Zdravookhranenniiai Istor Med, 27, 671–676. https://doi.org/10.32687/0869-866X-2019-27-si1-671-676

    CAS  Google Scholar 

  93. Iturralde, P., & Gil, M. (1986). Obstructive hypertrophic myocardiopathy and coronary atherosclerosis. Archivos del Instituto de Cardiologia de Mexico, 56, 135–145.

    CAS  Google Scholar 

  94. Marino, A., Zhang, Y., Rubinelli, L., Riemma, M. A., Ip, J. E., & Di Lorenzo, A. (2019). Pressure overload leads to coronary plaque formation, progression, and myocardial events in ApoE-/- mice. JCI insight, 4, e128220. https://doi.org/10.1172/jci.insight.128220

  95. Satoh, M., Nakamura, M., Satoh, H., Saitoh, H., Segawa, I., & Hiramori, K. (2000). Expression of tumor necrosis factor-alpha–converting enzyme and tumor necrosis factor-alpha in human myocarditis. Journal of the American College of Cardiology, 36, 1288–1294. https://doi.org/10.1016/s0735-1097(00)00827-5

    Article  CAS  Google Scholar 

  96. Fedak, P. W., Moravec, C. S., McCarthy, P. M., Altamentova, S. M., Wong, A. P., Skrtic, M., Verma, S., Weisel, R. D., & Li, R. K. (2006). Altered expression of disintegrin metalloproteinases and their inhibitor in human dilated cardiomyopathy. Circulation, 113, 238–245. https://doi.org/10.1161/CIRCULATIONAHA.105.571414

    Article  CAS  Google Scholar 

  97. Satoh, M., Iwasaka, J., Nakamura, M., Akatsu, T., Shimoda, Y., & Hiramori, K. (2004). Increased expression of tumor necrosis factor-alpha converting enzyme and tumor necrosis factor-alpha in peripheral blood mononuclear cells in patients with advanced congestive heart failure. European Journal of Heart Failure, 6, 869–875. https://doi.org/10.1016/j.ejheart.2004.02.007

    Article  CAS  Google Scholar 

  98. Luo, Y., Jiang, N., May, H. I., Luo, X., Ferdous, A., Schiattarella, G. G., Chen, G., Li, Q., Li, C., Rothermel, B. A., et al. (2021). Cooperative binding of ETS2 and NFAT links Erk1/2 and calcineurin signaling in the pathogenesis of cardiac hypertrophy. Circulation, 144, 34–51. https://doi.org/10.1161/CIRCULATIONAHA.120.052384

    Article  CAS  Google Scholar 

  99. Korotaeva, A. A., Samoilova, E. V., Chepurnova, D. A., Zhitareva, I. V., Shuvalova, Y. A., & Prokazova, N. V. (2018). Soluble glycoprotein 130 is inversely related to severity of coronary atherosclerosis. Biomarkers, 23, 527–532. https://doi.org/10.1080/1354750X.2018.1458151

    Article  CAS  Google Scholar 

  100. Zhou, M., Dai, W., Cui, Y., & Li, Y. (2020). Estrogen downregulates gp130 expression in HUVECs by regulating ADAM10 and ADAM17 via the estrogen receptor. Biochemical and Biophysical Research Communications, 523, 753–758. https://doi.org/10.1016/j.bbrc.2020.01.008

    Article  CAS  Google Scholar 

  101. Wolf, J., Waetzig, G. H., Chalaris, A., Reinheimer, T. M., Wege, H., Rose-John, S., & Garbers, C. (2016). Different soluble forms of the interleukin-6 family signal transducer gp130 fine-tune the blockade of interleukin-6 Trans-signaling. Journal of Biological Chemistry, 291, 16186–16196. https://doi.org/10.1074/jbc.M116.718551

    Article  CAS  Google Scholar 

  102. Purcell, M. K., Mu, J. L., Higgins, D. C., Elango, R., Whitmore, H., Harris, S., & Paigen, B. (2001). Fine mapping of Ath6, a quantitative trait locus for atherosclerosis in mice. Mammalian Genome, 12, 495–500. https://doi.org/10.1007/s00335001-0006-9

    Article  CAS  Google Scholar 

  103. Tsakadze, N. L., Sithu, S. D., Sen, U., English, W. R., Murphy, G., & D’Souza, S. E. (2006). Tumor necrosis factor-alpha-converting enzyme (TACE/ADAM-17) mediates the ectodomain cleavage of intercellular adhesion molecule-1 (ICAM-1). Journal of Biological Chemistry, 281, 3157–3164. https://doi.org/10.1074/jbc.M510797200

    Article  CAS  Google Scholar 

  104. Singh, R. J., Mason, J. C., Lidington, E. A., Edwards, D. R., Nuttall, R. K., Khokha, R., Knauper, V., Murphy, G., & Gavrilovic, J. (2005). Cytokine stimulated vascular cell adhesion molecule-1 (VCAM-1) ectodomain release is regulated by TIMP-3. Cardiovascular Research, 67, 39–49. https://doi.org/10.1016/j.cardiores.2005.02.020

    Article  CAS  Google Scholar 

  105. Garton, K. J., Gough, P. J., Blobel, C. P., Murphy, G., Greaves, D. R., Dempsey, P. J., & Raines, E. W. (2001). Tumor necrosis factor-alpha-converting enzyme (ADAM17) mediates the cleavage and shedding of fractalkine (CX3CL1). Journal of Biological Chemistry, 276, 37993–38001. https://doi.org/10.1074/jbc.M106434200

    Article  CAS  Google Scholar 

  106. Kitagawa, K., Matsumoto, M., Sasaki, T., Hashimoto, H., Kuwabara, K., Ohtsuki, T., & Hori, M. (2002). Involvement of ICAM-1 in the progression of atherosclerosis in APOE-knockout mice. Atherosclerosis, 160, 305–310. https://doi.org/10.1016/s0021-9150(01)00587-1

    Article  CAS  Google Scholar 

  107. Reinacher, M., Müller, H., Thiel, W., & Rudolph, R. L. (1978). Localization of papillomavirus and virus-specific antigens in the skin of tumor-bearing Mastomys natalensis (GRA Giessen). Medical Microbiology and Immunology, 165, 93–99. https://doi.org/10.1007/BF02122744

    Article  CAS  Google Scholar 

  108. Teupser, D., Pavlides, S., Tan, M., Gutierrez-Ramos, J. C., Kolbeck, R., & Breslow, J. L. (2004). Major reduction of atherosclerosis in fractalkine (CX3CL1)-deficient mice is at the brachiocephalic artery, not the aortic root. Proc Natl Acad Sci U S A, 101, 17795–17800. https://doi.org/10.1073/pnas.0408096101

    Article  CAS  Google Scholar 

  109. Chalaris, A., Adam, N., Sina, C., Rosenstiel, P., Lehmann-Koch, J., Schirmacher, P., Hartmann, D., Cichy, J., Gavrilova, O., Schreiber, S., et al. (2010). Critical role of the disintegrin metalloprotease ADAM17 for intestinal inflammation and regeneration in mice. Journal of Experimental Medicine, 207, 1617–1624. https://doi.org/10.1084/jem.20092366

    Article  CAS  Google Scholar 

  110. Fan, D., Takawale, A., Shen, M., Wang, W., Wang, X., Basu, R., Oudit, G. Y., & Kassiri, Z. (2015). Cardiomyocyte A Disintegrin And Metalloproteinase 17 (ADAM17) Is essential in post-myocardial infarction repair by regulating angiogenesis. Circulation. Heart Failure, 8, 970–979. https://doi.org/10.1161/CIRCHEARTFAILURE.114.002029

    Article  CAS  Google Scholar 

  111. DasGupta, S., Murumkar, P. R., Giridhar, R., & Yadav, M. R. (2009). Current perspective of TACE inhibitors: A review. Bioorganic & Medicinal Chemistry, 17, 444–459. https://doi.org/10.1016/j.bmc.2008.11.067

    Article  CAS  Google Scholar 

  112. Wong, E., Cohen, T., Romi, E., Levin, M., Peleg, Y., Arad, U., Yaron, A., Milla, M. E., & Sagi, I. (2016). Harnessing the natural inhibitory domain to control TNFα converting enzyme (TACE) activity in vivo. Science and Reports, 6, 35598. https://doi.org/10.1038/srep35598

    Article  CAS  Google Scholar 

  113. Takayanagi, T., Forrester, S. J., Kawai, T., Obama, T., Tsuji, T., Elliott, K. J., Nuti, E., Rossello, A., Kwok, H. F., Scalia, R., et al. (2016). Vascular ADAM17 as a novel therapeutic target in mediating cardiovascular hypertrophy and perivascular fibrosis Induced by angiotensin II. Hypertension, 68, 949–955. https://doi.org/10.1161/HYPERTENSIONAHA.116.07620

    Article  CAS  Google Scholar 

  114. Martz, L. (2014). Taking TIMP3 to heart. Science-Business eXchange, 7, 246–246. https://doi.org/10.1038/scibx.2014.246

    Article  Google Scholar 

  115. Moss, M. L., Sklair-Tavron, L., & Nudelman, R. (2008). Drug insight: Tumor necrosis factor-converting enzyme as a pharmaceutical target for rheumatoid arthritis. Nature Clinical Practice Rheumatology, 4, 300–309. https://doi.org/10.1038/ncprheum0797

    Article  CAS  Google Scholar 

  116. Thabet, M. M., & Huizinga, T. W. (2006). Drug evaluation: Apratastat, a novel TACE/MMP inhibitor for rheumatoid arthritis. Current Opinion in Investigational Drugs, 7, 1014–1019.

    CAS  Google Scholar 

  117. Horiuchi, K., Kimura, T., Miyamoto, T., Takaishi, H., Okada, Y., Toyama, Y., & Blobel, C. P. (2007). Cutting edge: TNF-alpha-converting enzyme (TACE/ADAM17) inactivation in mouse myeloid cells prevents lethality from endotoxin shock. The Journal of Immunology, 179, 2686–2689. https://doi.org/10.4049/jimmunol.179.5.2686

    Article  CAS  Google Scholar 

  118. Aktas, B., Pozgajova, M., Bergmeier, W., Sunnarborg, S., Offermanns, S., Lee, D., Wagner, D. D., & Nieswandt, B. (2005). Aspirin induces platelet receptor shedding via ADAM17 (TACE). Journal of Biological Chemistry, 280, 39716–39722. https://doi.org/10.1074/jbc.M507762200

    Article  CAS  Google Scholar 

  119. Gómez-Gaviro, M. V., González-Alvaro, I., Domínguez-Jiménez, C., Peschon, J., Black, R. A., Sánchez-Madrid, F., & Díaz-González, F. (2002). Structure-function relationship and role of tumor necrosis factor-alpha-converting enzyme in the down-regulation of L-selectin by non-steroidal anti-inflammatory drugs. Journal of Biological Chemistry, 277, 38212–38221. https://doi.org/10.1074/jbc.M205142200

    Article  Google Scholar 

  120. Teng, M., Wolf, M., Ofsthun, M. N., Lazarus, J. M., Hernán, M. A., Camargo, C. A., Jr., & Thadhani, R. (2005). Activated injectable vitamin D and hemodialysis survival: A historical cohort study. Journal of the American Society of Nephrology, 16, 1115–1125. https://doi.org/10.1681/ASN.2004070573

    Article  CAS  Google Scholar 

  121. Arcidiacono, M. V., Yang, J., Fernandez, E., & Dusso, A. (2015). The induction of C/EBPβ contributes to vitamin D inhibition of ADAM17 expression and parathyroid hyperplasia in kidney disease. Nephrology, Dialysis, Transplantation, 30, 423–433. https://doi.org/10.1093/ndt/gfu311

    Article  CAS  Google Scholar 

  122. Dusso, A., Arcidiacono, M. V., Yang, J., & Tokumoto, M. (2010). Vitamin D inhibition of TACE and prevention of renal osteodystrophy and cardiovascular mortality. Journal of Steroid Biochemistry and Molecular Biology, 121, 193–198. https://doi.org/10.1016/j.jsbmb.2010.03.064

    Article  CAS  Google Scholar 

  123. Kawai, T., Elliott, K. J., Scalia, R., & Eguchi, S. (2021). Contribution of ADAM17 and related ADAMs in cardiovascular diseases. Cellular and Molecular Life Sciences, 78, 4161–4187. https://doi.org/10.1007/s00018-021-03779-w

    Article  CAS  Google Scholar 

  124. Cho, Y., Park, D., & Kim, C. (2017). Disruption of TACE-filamin interaction can inhibit TACE-mediated ectodomain shedding. Biochemical and Biophysical Research Communications, 490, 997–1003. https://doi.org/10.1016/j.bbrc.2017.06.153

    Article  CAS  Google Scholar 

  125. Sun, C., Hu, A., Wang, S., Tian, B., Jiang, L., Liang, Y., Wang, H., & Dong, J. (2020). ADAM17-regulated CX3CL1 expression produced by bone marrow endothelial cells promotes spinal metastasis from hepatocellular carcinoma. International Journal of Oncology, 57, 249–263. https://doi.org/10.3892/ijo.2020.5045

    CAS  Google Scholar 

  126. Coglievina, M., Guarnaccia, C., Zlatev, V., Pongor, S., & Pintar, A. (2013). Jagged-1 juxtamembrane region: Biochemical characterization and cleavage by ADAM17 (TACE) catalytic domain. Biochemical and Biophysical Research Communications, 432, 666–671. https://doi.org/10.1016/j.bbrc.2013.02.022

    Article  CAS  Google Scholar 

  127. Arai, J., Goto, K., Tanoue, Y., Ito, S., Muroyama, R., Matsubara, Y., Nakagawa, R., Kaise, Y., Lim, L. A., Yoshida, H., & Kato, N. (2018). Enzymatic inhibition of MICA sheddase ADAM17 by lomofungin in hepatocellular carcinoma cells. International Journal of Cancer, 143, 2575–2583. https://doi.org/10.1002/ijc.31615

    Article  CAS  Google Scholar 

  128. Kanzaki, H., Makihira, S., Suzuki, M., Ishii, T., Movila, A., Hirschfeld, J., Mawardi, H., Lin, X., Han, X., Taubman, M. A., & Kawai, T. (2016). Soluble RANKL cleaved from activated lymphocytes by TNF-α-converting enzyme contributes to osteoclastogenesis in periodontitis. The Journal of Immunology, 197, 3871–3883. https://doi.org/10.4049/jimmunol.1601114

    Article  CAS  Google Scholar 

  129. Xu, J., Sriramula, S., Xia, H., Moreno-Walton, L., Culicchia, F., Domenig, O., Poglitsch, M., & Lazartigues, E. (2017). Clinical relevance and role of neuronal AT(1) receptors in ADAM17-mediated ACE2 shedding in neurogenic hypertension. Circulation Research, 121, 43–55. https://doi.org/10.1161/CIRCRESAHA.116.310509

    Article  CAS  Google Scholar 

  130. Kanzaki, H., Shinohara, F., Suzuki, M., Wada, S., Miyamoto, Y., Yamaguchi, Y., Katsumata, Y., Makihira, S., Kawai, T., Taubman, M. A., & Nakamura, Y. (2016). A-Disintegrin and metalloproteinase (ADAM) 17 enzymatically degrades interferon-gamma. Science and Reports, 6, 32259. https://doi.org/10.1038/srep32259

    Article  CAS  Google Scholar 

  131. Parekh, R. U., & Sriramula, S. (2020). Activation of Kinin B1R Upregulates ADAM17 and Results in ACE2 Shedding in Neurons. International Journal of Molecular Sciences, 22(1), 145. https://doi.org/10.3390/ijms22010145

  132. Peng, Q., Deng, Y., Yang, X., Leng, X., Yang, Y., & Liu, H. (2016). Genetic variants of ADAM17 are implicated in the pathological process of Kawasaki disease and secondary coronary artery lesions via the TGF-β/SMAD3 signaling pathway. European Journal of Pediatrics, 175, 705–713. https://doi.org/10.1007/s00431-016-2696-8

    Article  CAS  Google Scholar 

  133. Nielsen, M. A., Andersen, T., Etzerodt, A., Kragstrup, T. W., Rasmussen, T. K., Stengaard-Pedersen, K., Hetland, M. L., Hørslev-Petersen, K., Junker, P., Østergaard, M., et al. (2016). A disintegrin and metalloprotease-17 and galectin-9 are important regulators of local 4–1BB activity and disease outcome in rheumatoid arthritis. Rheumatology (Oxford), 55, 1871–1879. https://doi.org/10.1093/rheumatology/kew237

    Article  CAS  Google Scholar 

  134. Mohammed, R. N., Wehenkel, S. C., Galkina, E. V., Yates, E. K., Preece, G., Newman, A., Watson, H. A., Ohme, J., Bridgeman, J. S., Durairaj, R. R. P., et al. (2019). ADAM17-dependent proteolysis of L-selectin promotes early clonal expansion of cytotoxic T cells. Science and Reports, 9, 5487. https://doi.org/10.1038/s41598-019-41811-z

    Article  Google Scholar 

  135. Orme, J. J., Jazieh, K. A., Xie, T., Harrington, S., Liu, X., Ball, M., Madden, B., Charlesworth, M. C., Azam, T. U., Lucien, F., et al. (2020). ADAM10 and ADAM17 cleave PD-L1 to mediate PD-(L)1 inhibitor resistance. Oncoimmunology, 9, 1744980. https://doi.org/10.1080/2162402X.2020.1744980

    Article  Google Scholar 

Download references

Funding

This research was funded by the Natural Science Foundation of Hunan Province (Nos. 2020JJ4850 and 2021JJ31026). The funder had no role in the writing of the manuscript and in the decision to publish it.

Author information

Authors and Affiliations

Authors

Contributions

BYT designed, drafted, and revised the manuscript; JG revised and participated in the drafting of the manuscript; YW participated in the drafting and editing of the manuscript; JW contributed to the manuscript editing and funding; XHT proposed the conception, revised the manuscript, and obtained funding. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Juan Wen or Xiao-Hong Tang.

Ethics declarations

Ethics Approval

No human and animal studies were carried out by the authors for this article.

Conflict of Interest

The authors declare no competing interests.

Additional information

Associate Editor Yihua Bei oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, BY., Ge, J., Wu, Y. et al. The Role of ADAM17 in Inflammation-Related Atherosclerosis. J. of Cardiovasc. Trans. Res. 15, 1283–1296 (2022). https://doi.org/10.1007/s12265-022-10275-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-022-10275-4

Keywords

Navigation