Skip to main content

Advertisement

Log in

LncRNA HDAC11-AS1 Suppresses Atherosclerosis by Inhibiting HDAC11-Mediated Adropin Histone Deacetylation

  • Original Article
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

LncRNA HDAC11-AS1 (HDAC11-AS1) is the natural antisense transcript of HDAC11, a key enzyme for DNA histone deacetylation. We evaluated the role of HDAC11-AS1 in atherosclerosis. In this research, we found that HDAC11-AS1 ameliorated blood lipid levels and atherosclerosis in high fat-dieted apoE−/− mice by regulating HDAC11 negatively. The change in blood lipid levels is related to the expression of LPL, which is enhanced by HDAC11-AS1 through regulating adropin histone deacetylation in vitro and in vivo. In conclusion, HDAC11-AS1 plays an anti-atherogenic role through adropin to induce LPL expressions, thereby enhancing TG metabolism. The results are valuable for the further development of HDAC11-AS1 and its clinical applications. It provides a new clinical therapeutic target for cardiovascular disease treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  1. Khan, S. S., Ning, H., Wilkins, J. T., Allen, N., Carnethon, M., Berry, J. D., et al. (2018). Association of body mass index with lifetime risk of cardiovascular disease and compression of morbidity. JAMA Cardiology, 3, 280–287. https://doi.org/10.1001/jamacardio.2018.0022.

    Article  Google Scholar 

  2. Rahman, M. S., & Woollard, K. (2017). Atherosclerosis. Advances in Experimental Medicine and Biology, 1003, 121–144. https://doi.org/10.1007/978-3-319-57613-8_7

    Article  CAS  Google Scholar 

  3. Ayyappa, K. A., Shatwan, I., Bodhini, D., Bramwell, L. R., Ramya, K., Sudha, V., Anjana, R. M., Lovegrove, J. A., Mohan, V., Radha, V., & Vimaleswaran, K. S. (2017). High fat diet modifies the association of lipoprotein lipase gene polymorphism with high density lipoprotein cholesterol in an Asian Indian population. Nutrition & Metabolism (London), 14, 8. https://doi.org/10.1186/s12986-016-0155-1

    Article  CAS  Google Scholar 

  4. Nakajima, K., Tokita, Y., Sakamaki, K., Shimomura, Y., Kobayashi, J., Kamachi, K., Tanaka, A., Stanhope, K. L., Havel, P. J., Wang, T., Machida, T., & Murakami, M. (2017). Triglyceride content in remnant lipoproteins is significantly increased after food intake and is associated with plasma lipoprotein lipase. Clinica Chimica Acta, 465, 45–52. https://doi.org/10.1016/j.cca.2016.12.011

    Article  CAS  Google Scholar 

  5. Takahashi, S. (2017). Triglyceride rich lipoprotein -LPL-VLDL receptor and Lp(a)-VLDL receptor pathways for macrophage foam cell formation. Journal of Atherosclerosis and Thrombosis, 24, 552–559. https://doi.org/10.5551/jat.RV17004

    Article  CAS  Google Scholar 

  6. Olivecrona, G., & Olivecrona, T. (2010). Triglyceride lipases and atherosclerosis. Current Opinion in Lipidology, 21, 409–415. https://doi.org/10.1097/MOL.0b013e32833ded83

    Article  CAS  Google Scholar 

  7. Shapiro, M. D., & Fazio, S. (2016). From lipids to inflammation: New approaches to reducing atherosclerotic risk. Circulation Research, 118, 732–749. https://doi.org/10.1161/CIRCRESAHA.115.306471

    Article  CAS  Google Scholar 

  8. Larsson, M., Allan, C. M., Jung, R. S., Heizer, P. J., Beigneux, A. P., Young, S. G., & Fong, L. G. (2017). Apolipoprotein C-III inhibits triglyceride hydrolysis by GPIHBP1-bound LPL. Journal of Lipid Research, 58, 1893–1902. https://doi.org/10.1194/jlr.M078220

    Article  CAS  Google Scholar 

  9. Lian, A., Wu, K., Liu, T., Jiang, N., & Jiang, Q. (2016). Adropin induction of lipoprotein lipase expression in tilapia hepatocytes. Journal of Molecular Endocrinology, 56, 11–22. https://doi.org/10.1530/JME-15-0207

    Article  CAS  Google Scholar 

  10. Ghoshal, S., Stevens, J. R., Billon, C., Girardet, C., Sitaula, S., Leon, A. S., et al. (2018). Adropin: An endocrine link between the biological clock and cholesterol homeostasis. Molecular Metabolism, 8, 51–64. https://doi.org/10.1016/j.molmet.2017.12.002.

    Article  CAS  Google Scholar 

  11. Yosaee, S., Soltani, S., Sekhavati, E., & Jazayeri, S. (2016). Adropin- a novel biomarker of heart disease: A systematic review article. Iranian Journal of Public Health, 45, 1568–1576.

    Google Scholar 

  12. Li, L., Xie, W., Zheng, X. L., Yin, W. D., & Tang, C. K. (2016). A novel peptide adropin in cardiovascular diseases. Clinica Chimica Acta, 453, 107–113. https://doi.org/10.1016/j.cca.2015.12.010

    Article  CAS  Google Scholar 

  13. Lovren, F., Pan, Y., Quan, A., Singh, K. K., Shukla, P. C., Gupta, M., Al-Omran, M., Teoh, H., & Verma, S. (2010). Adropin is a novel regulator of endothelial function. Circulation, 122, S185–S192. https://doi.org/10.1161/CIRCULATIONAHA.109.931782

    Article  CAS  Google Scholar 

  14. Bousmpoula, A., Kouskouni, E., Benidis, E., Demeridou, S., Kapeta-Kourkouli, R., Chasiakou, A., & Baka, S. (2018). Adropin levels in women with polycystic ovaries undergoing ovarian stimulation: Correlation with lipoprotein lipid profiles. Gynecological Endocrinology, 34, 153–156. https://doi.org/10.1080/09513590.2017.1379498

    Article  CAS  Google Scholar 

  15. Sato, K., Yamashita, T., Shirai, R., Shibata, K., Okano, T., Yamaguchi M., Mori, Y. Hirano T., & Watanabe T. (2018). Adropin contributes to anti-atherosclerosis by suppressing monocyte-endothelial cell adhesion and smooth muscle cell proliferation. International Journal of Molecular Sciences, 19(5). https://doi.org/10.3390/ijms19051293

  16. Stoll, S., Wang, C., & Qiu, H. (2018). DNA methylation and histone modification in hypertension. International Journal of Molecular Sciences, 19(4). https://doi.org/10.3390/ijms19041174

  17. von Knethen, A., & Brune, B. (2019). Histone deacetylation inhibitors as therapy concept in sepsis. International Journal of Molecular Sciences, 20(2). https://doi.org/10.3390/ijms20020346

  18. Watts, B. R., Wittmann, S., Wery, M., Gautier, C., Kus, K., Birot, A., Heo, D. H., Kilchert, C., Morillon, A., & Vasiljeva, L. (2018). Histone deacetylation promotes transcriptional silencing at facultative heterochromatin. Nucleic Acids Research, 46, 5426–5440. https://doi.org/10.1093/nar/gky232

    Article  CAS  Google Scholar 

  19. Bassett, S. A., & Barnett, M. P. (2014). The role of dietary histone deacetylases (HDACs) inhibitors in health and disease. Nutrients, 6, 4273–4301. https://doi.org/10.3390/nu6104273

    Article  CAS  Google Scholar 

  20. Sagarkar, S., Balasubramanian, N., Mishra, S., Choudhary, A. G., Kokare, D. M., & Sakharkar, A. J. (2019). Repeated mild traumatic brain injury causes persistent changes in histone deacetylase function in hippocampus: Implications in learning and memory deficits in rats. Brain Research, 1711, 183–192. https://doi.org/10.1016/j.brainres.2019.01.022

    Article  CAS  Google Scholar 

  21. Zheng, X. X., Zhou, T., Wang, X. A., Tong, X. H., & Ding, J. W. (2015). Histone deacetylases and atherosclerosis. Atherosclerosis, 240, 355–366. https://doi.org/10.1016/j.atherosclerosis.2014.12.048

    Article  CAS  Google Scholar 

  22. Sahakian, E., Powers, J. J., Chen, J., Deng, S. L., Cheng, F., Distler, A., Woods, D. M., Rock-Klotz, J., Sodre, A. L., Youn, J. I., Woan, K. V., Villagra, A., Gabrilovich, D., Sotomayor, E. M., & Pinilla-Ibarz, J. (2015). Histone deacetylase 11: A novel epigenetic regulator of myeloid derived suppressor cell expansion and function. Molecular Immunology, 63, 579–585. https://doi.org/10.1016/j.molimm.2014.08.002

    Article  CAS  Google Scholar 

  23. Stammler, D., Eigenbrod, T., Menz, S., Frick, J. S., Sweet, M. J., Shakespear, M. R., Jantsch, J., Siegert, I., Wolfle, S., Langer, J. D., Oehme, I., Schaefer, L., Fischer, A., Knievel, J., Heeg, K., Dalpke, A. H., & Bode, K. A. (2015). Inhibition of histone deacetylases permits lipopolysaccharide-mediated secretion of bioactive IL-1beta via a caspase-1-independent mechanism. The Journal of Immunology, 195, 5421–5431. https://doi.org/10.4049/jimmunol.1501195

    Article  CAS  Google Scholar 

  24. Byun, S. K., An, T. H., Son, M. J., Lee, D. S., Kang, H. S., Lee, E. W., Han, B. S., Kim, W. K., Bae, K. H., Oh, K. J., & Lee, S. C. (2017). HDAC11 inhibits myoblast differentiation through repression of MyoD-dependent transcription. Molecules and Cells, 40, 667–676. https://doi.org/10.14348/molcells.2017.0116

    Article  CAS  Google Scholar 

  25. Wang, X., Wu, Y., Jiao, J., & Huang, Q. (2018). Mycobacterium tuberculosis infection induces IL-10 gene expression by disturbing histone deacetylase 6 and histonedeacetylase 11 equilibrium in macrophages. Tuberculosis (Edinburgh, Scotland), 108, 118–123. https://doi.org/10.1016/j.tube.2017.11.008

    Article  CAS  Google Scholar 

  26. Sun, L., Marin de Evsikova, C., Bian, K., Achille, A., Telles, E., Pei, H., & Seto, E. (2018). Programming and regulation of metabolic homeostasis by HDAC11. eBioMedicine, 33, 157–168. https://doi.org/10.1016/j.ebiom.2018.06.025

    Article  Google Scholar 

  27. Gil, N., & Ulitsky, I. (2020). Regulation of gene expression by cis-acting long non-coding RNAs. Nature Reviews Genetics, 21, 102–117. https://doi.org/10.1038/s41576-019-0184-5

    Article  CAS  Google Scholar 

  28. Cai, Y., Yang, Y., Chen, X., Wu, G., Zhang, X., Liu, Y., Yu, J., Wang, X., Fu, J., Li, C., Jose, P. A., Zeng, C., & Zhou, L. (2016). Circulating “lncRNA OTTHUMT00000387022” from monocytes as a novel biomarker for coronary artery disease. Cardiovascular Research, 112, 714–724. https://doi.org/10.1093/cvr/cvw022

    Article  CAS  Google Scholar 

  29. Zhen, Z., Ren, S., Ji, H., Ding, X., Zou, P., & Lu, J. (2019). The lncRNA DAPK-IT1 regulates cholesterol metabolism and inflammatory response in macrophages and promotes atherogenesis. Biochemical and Biophysical Research Communications, 516, 1234–1241. https://doi.org/10.1016/j.bbrc.2019.06.113

    Article  CAS  Google Scholar 

  30. Shang, P., Chen, G., Zu, G., Song, X., Jiao, P., You, G., Zhao, J., Li, H., & Zhou, H. (2019). Long noncoding RNA expression analysis reveals the regulatory effects of nitinol-based nanotubular coatings on human coronary artery endothelial cells. International Journal of Nanomedicine, 14, 3297–3309. https://doi.org/10.2147/IJN.S204067

    Article  CAS  Google Scholar 

  31. Jung, J., Lee, S., Cho, H. S., Park, K., Ryu, J. W., Jung, M., Kim, J., Kim, H., & Kim, D. S. (2019). Bioinformatic analysis of regulation of natural antisense transcripts by transposable elements in human mRNA. Genomics, 111, 159–166. https://doi.org/10.1016/j.ygeno.2018.01.011

    Article  CAS  Google Scholar 

  32. Zhao, X., Li, J., Lian, B., Gu, H., Li, Y., & Qi, Y. (2018). Global identification of Arabidopsis lncRNAs reveals the regulation of MAF4 by a natural antisense RNA. Nature Communications, 9, 5056. https://doi.org/10.1038/s41467-018-07500-7

    Article  CAS  Google Scholar 

  33. Jadaliha, M., Gholamalamdari, O., Tang, W., Zhang, Y., Petracovici, A., Hao, Q., Tariq, A., Kim, T. G., Holton, S. E., Singh, D. K., Li, X. L., Freier, S. M., Ambs, S., Bhargava, R., Lal, A., Prasanth, S. G., Ma, J., & Prasanth, K. V. (2018). A natural antisense lncRNA controls breast cancer progression by promoting tumor suppressor gene mRNA stability. PLoS Genetics, 14, e1007802. https://doi.org/10.1371/journal.pgen.1007802

    Article  CAS  Google Scholar 

  34. Bodary, P. F., Gu, S., Shen, Y., Hasty, A. H., Buckler, J. M., & Eitzman, D. T. (2005). Recombinant leptin promotes atherosclerosis and thrombosis in apolipoprotein E-deficient mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 25, e119–e122. https://doi.org/10.1161/01.ATV.0000173306.47722.ec

    Article  CAS  Google Scholar 

  35. Feng, Z., Hai-ning, Y., Xiao-man, C., Zun-chen, W., Sheng-rong, S., & Das, U. N. (2014). Effect of yellow capsicum extract on proliferation and differentiation of 3T3-L1 preadipocytes. Nutrition, 30, 319–325. https://doi.org/10.1016/j.nut.2013.08.003

    Article  CAS  Google Scholar 

  36. Kim, D. Y., Kim, M. S., Sa, B. K., Kim, M. B., & Hwang, J. K. (2012). Boesenbergia pandurata attenuates diet-induced obesity by activating AMP-activated protein kinase and regulating lipid metabolism. International Journal of Molecular Sciences, 13, 994–1005. https://doi.org/10.3390/ijms13010994

    Article  CAS  Google Scholar 

  37. Ewart, M. A., & Kennedy, S. (2012). Diabetic cardiovascular disease–AMP-activated protein kinase (AMPK) as a therapeutic target. Cardiovascular & Hematological Agents in Medicinal Chemistry, 10, 190–211. https://doi.org/10.2174/187152512802651015

    Article  CAS  Google Scholar 

  38. Rodrigues, S. C., Pantaleao, L. C., Nogueira, T. C., Gomes, P. R., Albuquerque, G. G., Nachbar, R. T., Torres-Leal, F. L., Caperuto, L. C., Lellis-Santos, C., Anhe, G. F., & Bordin, S. (2014). Selective regulation of hepatic lipid metabolism by the AMP-activated protein kinase pathway in late-pregnant rats. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 307, R1146–R1156. https://doi.org/10.1152/ajpregu.00513.2013

    Article  CAS  Google Scholar 

  39. Knoll, M., Lodish, H. F., & Sun, L. (2015). Long non-coding RNAs as regulators of the endocrine system. Nature Reviews Endocrinology, 11, 151–160. https://doi.org/10.1038/nrendo.2014.229

    Article  CAS  Google Scholar 

  40. He, W., Liang, B., Wang, C., Li, S., Zhao, Y., Huang, Q., Liu, Z., Yao, Z., Wu, Q., Liao, W., Zhang, S., Liu, Y., Xiang, Y., Liu, J., & Shi, M. (2019). MSC-regulated lncRNA MACC1-AS1 promotes stemness and chemoresistance through fatty acid oxidation in gastric cancer. Oncogene, 38, 4637–4654. https://doi.org/10.1038/s41388-019-0747-0

    Article  CAS  Google Scholar 

  41. Zhao, X. Y., Xiong, X., Liu, T., Mi, L., Peng, X., Rui, C., Guo, L., Li, S., Li, X., & Lin, J. D. (2018). Long noncoding RNA licensing of obesity-linked hepatic lipogenesis and NAFLD pathogenesis. Nature Communications, 9, 2986. https://doi.org/10.1038/s41467-018-05383-2

    Article  CAS  Google Scholar 

  42. Scheideler, M. (2019). Regulatory Small and Long Noncoding RNAs in Brite/Brown Adipose Tissue. Handbook of Experimental Pharmacology, 251, 215–237. https://doi.org/10.1007/164_2018_123

    Article  CAS  Google Scholar 

  43. Zhang, H. N., Xu, Q. Q., Thakur, A., Alfred, M. O., Chakraborty, M., Ghosh, A., & Yu, X. B. (2018). Endothelial dysfunction in diabetes and hypertension: Role of microRNAs and long non-coding RNAs. Life Sciences, 213, 258–268. https://doi.org/10.1016/j.lfs.2018.10.028

    Article  CAS  Google Scholar 

  44. Wu, G., Cai, J., Han, Y., Chen, J., Huang, Z. P., Chen, C., Cai, Y., Huang, H., Yang, Y., Liu, Y., Xu, Z., He, D., Zhang, X., Hu, X., Pinello, L., Zhong, D., He, F., Yuan, G. C., Wang, D. Z., & Zeng, C. (2014). LincRNA-p21 regulates neointima formation, vascular smooth muscle cell proliferation, apoptosis, and atherosclerosis by enhancing p53 activity. Circulation, 130, 1452–1465. https://doi.org/10.1161/CIRCULATIONAHA.114.011675

    Article  CAS  Google Scholar 

  45. Huang, P., Huang, F. Z., Liu, H. Z., Zhang, T. Y., Yang, M. S., & Sun, C. Z. (2019). LncRNA MEG3 functions as a ceRNA in regulating hepatic lipogenesis by competitively binding to miR-21 with LRP6. Metabolism, 94, 1–8. https://doi.org/10.1016/j.metabol.2019.01.018

    Article  CAS  Google Scholar 

  46. Bagchi, R. A., Ferguson, B. S., Stratton, M. S., Hu, T., Cavasin, M. A., Sun, L., Lin, Y. H., Liu, D., Londono, P., Song, K., Pino, M. F. Sparks, L. M., Smith, S. R., Scherer, P. E., Collins, S., Seto, E., & McKinsey, T. A. (2018). HDAC11 suppresses the thermogenic program of adipose tissue via BRD2. JCI Insight, 3(15). https://doi.org/10.1172/jci.insight.120159

  47. Bhaskara, S. (2018). Histone deacetylase 11 as a key regulator of metabolism and obesity. eBioMedicine, 35, 27–28. https://doi.org/10.1016/j.ebiom.2018.08.008

    Article  Google Scholar 

  48. Fan, X. D., Wan, L. L., Duan, M., & Lu, S. (2018). HDAC11 deletion reduces fructose-induced cardiac dyslipidemia, apoptosis and inflammation by attenuating oxidative stress injury. Biochemical and Biophysical Research Communications, 503, 444–451. https://doi.org/10.1016/j.bbrc.2018.04.090

    Article  CAS  Google Scholar 

  49. Butler, A. A., Tam, C. S., Stanhope, K. L., Wolfe, B. M., Ali, M. R., O’Keeffe, M., St-Onge, M. P., Ravussin, E., & Havel, P. J. (2012). Low circulating adropin concentrations with obesity and aging correlate with risk factors for metabolic disease and increase after gastric bypass surgery in humans. Journal of Clinical Endocrinology and Metabolism, 97, 3783–3791. https://doi.org/10.1210/jc.2012-2194

    Article  CAS  Google Scholar 

  50. Ganesh Kumar, K., Zhang, J., Gao, S., Rossi, J., McGuinness, O. P., Halem, H. H., Culler, M. D., Mynatt, R. L., & Butler, A. A. (2012). Adropin deficiency is associated with increased adiposity and insulin resistance. Obesity (Silver Spring), 20, 1394–1402. https://doi.org/10.1038/oby.2012.31

    Article  CAS  Google Scholar 

Download references

Funding

The authors gratefully acknowledge the financial supports from the National Natural Sciences Foundation of China (81800386) and the scientific research project of health commission of Hunan province (202101021784).

Author information

Authors and Affiliations

Authors

Contributions

Liang Li supplied conception, design, execution of the experiments, analysis and interpretation of data, and writing of the initial draft of the manuscript. Wei Xie critically evaluated and edited the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Wei Xie.

Ethics declarations

Ethical Approval

All institutional and national guidelines for the care and use of laboratory animals were followed and approved by the appropriate institutional committees.

Conflict of Interest

The authors declare no competing interests.

Additional information

Associate Editor Junjie Xiao oversaw the review of this article

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Xie, W. LncRNA HDAC11-AS1 Suppresses Atherosclerosis by Inhibiting HDAC11-Mediated Adropin Histone Deacetylation. J. of Cardiovasc. Trans. Res. 15, 1256–1269 (2022). https://doi.org/10.1007/s12265-022-10248-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-022-10248-7

Keywords

Navigation