Skip to main content

Advertisement

Log in

Sacubitril/Valsartan Decreases Atrial Fibrillation Susceptibility by Inhibiting Angiotensin II-Induced Atrial Fibrosis Through p-Smad2/3, p-JNK, and p-p38 Signaling Pathways

  • Original Article
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Sacubitril/valsartan (SAC/VAL) prevents angiotensin II (AngII) from binding AT1-R and blocks degradation of natriuretic peptides. Despite its efficacy in reducing ventricular fibrosis and preserving cardiac functions, which has been extensively demonstrated in myocardial infarction or pressure overload models, few studies have been conducted to determine whether SAC/VAL could attenuate atrial fibrosis and decrease atrial fibrillation (AF) susceptibility. Our study provided evidence for the inhibition of atrial fibrosis and reduced susceptibility to AF by SAC/VAL. After 28 days of AngII continuous subcutaneous stimulation, rats in SAC/VAL group exhibited reduced extent of atrial fibrosis, inhibited proliferation, migration, and differentiation of atrial fibroblasts, and decreased susceptibility to AF. We further found that inhibition of p-Smad2/3, p-JNK, and p-p38MAPK pathways is involved in the role of SAC/VAL on AngII-induced atrial fibrosis in vivo. These results emphasize the importance of SAC/VAL in the prevention of AngII-induced atrial fibrosis and may help to enrich the options for AF pharmacotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

α-SMA:

α-smooth muscle actin

SAC/VAL:

sacubitril/valsartan

AT-R:

angiotensin receptor

ACEIs:

angiotensin-converting enzyme inhibitors

AF:

atrial fibrillation

AFB:

atrial fibroblast

AngII:

angiotensin II

ANP:

atrial natriuretic peptide

ARBs:

angiotensin receptor blockers

BNP:

B-type natriuretic peptide

CNP:

C-type natriuretic peptide

DBP:

diastolic blood pressure

EF:

ejection fraction

ELISA:

enzyme-linked immunosorbent assay

EPS:

electrophysiological study

ERK:

extracellular signal-regulated kinase

HFrEF:

heart failure with reduced ejection fraction

IHC:

immunohistochemistry

JNK:

C-Jun N-terminal kinase

LAD:

left atrial diameter

LVDD:

LV end-diastolic diameter

MAPK:

mitogen-activated protein kinase

MBP:

mean blood pressure

MI:

myocardial infarction

MTT:

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

MV E/A:

mitral valvular early and atrial peaks

NEP:

neutral endopeptidase

NFAT:

calcineurin/nuclear factor of activated T cell

NF-κB:

nuclear factor kappa-light-chain-enhancer of activated B cells

NLRP3:

nucleotide-binding oligomerization domain-like receptor protein 3

NPs:

natriuretic peptides

NT-proBNP:

N-terminal pro-brain natriuretic peptide

p-CaMKII:

phosphorylated expression calmodulin-dependent protein kinase II

PKG:

protein kinase G

RAAS:

renin-angiotensin-aldosterone system

SBP:

systolic blood pressure

Smad:

small mother against decapentaplegic

References

  1. Staerk, L., Sherer, J. A., Ko, D., Benjamin, E. J., & Helm, R. H. (2017). Atrial Fibrillation: Epidemiology, Pathophysiology, and Clinical Outcomes. Circulation Research, 120, 1501–1517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Christiansen, C. B., Gerds, T. A., Olesen, J. B., Kristensen, S. L., Lamberts, M., Lip, G. Y., Gislason, G. H., Køber, L., & Torp-Pedersen, C. (2016). Atrial fibrillation and risk of stroke: a nationwide cohort study. Europace, 18, 1689–1697.

    Article  PubMed  Google Scholar 

  3. Holmqvist, F., Kesek, M., Englund, A., Blomström-Lundqvist, C., Karlsson, L. O., Kennebäck, G., Poçi, D., Samo-Ayou, R., Sigurjónsdóttir, R., Ringborn, M., Herczku, C., Carlson, J., Fengsrud, E., Tabrizi, F., Höglund, N., Lönnerholm, S., Kongstad, O., Jönsson, A., & Insulander, P. (2019). A decade of catheter ablation of cardiac arrhythmias in Sweden: ablation practices and outcomes. European Heart Journal, 40, 820–830.

    Article  PubMed  Google Scholar 

  4. Wijesurendra, R. S., & Casadei, B. (2019). Mechanisms of atrial fibrillation. Heart (British Cardiac Society)., 105, 1860–1867.

    CAS  Google Scholar 

  5. Chen, P. S., Chen, L. S., Fishbein, M. C., Lin, S. F., & Nattel, S. (2014). Role of the autonomic nervous system in atrial fibrillation: pathophysiology and therapy. Circulation Research, 114, 1500–1515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pellman, J., & Sheikh, F. (2015). Atrial fibrillation: mechanisms, therapeutics, and future directions. Comprehensive Physiology, 5, 649–665.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Dzeshka, M. S., Lip, G. Y., Snezhitskiy, V., & Shantsila, E. (2015). Cardiac Fibrosis in Patients With Atrial Fibrillation: Mechanisms and Clinical Implications. Journal of the American College of Cardiology, 66, 943–959.

    Article  PubMed  Google Scholar 

  8. Ma, J., Ma, S., Yin, C., & Wu, H. (2018). Matrine reduces susceptibility to postinfarct atrial fibrillation in rats due to antifibrotic properties. Journal of Cardiovascular Electrophysiology, 29, 616–627.

    Article  PubMed  Google Scholar 

  9. Liu, M., Li, W., Wang, H., Yin, L., Ye, B., Tang, Y., & Huang, C. (2019). CTRP9 Ameliorates Atrial Inflammation, Fibrosis, and Vulnerability to Atrial Fibrillation in Post-Myocardial Infarction Rats. Journal of the American Heart Association, 8, e013133.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Beiert, T., Tiyerili, V., Knappe, V., Effelsberg, V., Linhart, M., Stöckigt, F., Klein, S., Schierwagen, R., Trebicka, J., Nickenig, G., Schrickel, J. W., & Andrié, R. P. (2017). Relaxin reduces susceptibility to post-infarct atrial fibrillation in mice due to anti-fibrotic and anti-inflammatory properties. Biochemical and Biophysical Research Communications, 490, 643–649.

    Article  CAS  PubMed  Google Scholar 

  11. Ge, Z., Chen, Y., Wang, B., Zhang, X., Yan, Y., Zhou, L., Zhang, Y., & Xie, Y. (2020). MFGE8 attenuates Ang-II-induced atrial fibrosis and vulnerability to atrial fibrillation through inhibition of TGF-β1/Smad2/3 pathway. Journal of Molecular and Cellular Cardiology, 139, 164–175.

    Article  CAS  PubMed  Google Scholar 

  12. Ehrlich, J. R., Hohnloser, S. H., & Nattel, S. (2006). Role of angiotensin system and effects of its inhibition in atrial fibrillation: clinical and experimental evidence. European Heart Journal, 27, 512–518.

    Article  CAS  PubMed  Google Scholar 

  13. Nattel, S. (2017). Molecular and Cellular Mechanisms of Atrial Fibrosis in Atrial Fibrillation. JACC: Clinical Electrophysiology, 3, 425–435.

    PubMed  Google Scholar 

  14. Jansen, H. J., Mackasey, M., Moghtadaei, M., Liu, Y., Kaur, J., Egom, E. E., Tuomi, J. M., Rafferty, S. A., Kirkby, A. W., & Rose, R. A. (2019). NPR-C (Natriuretic Peptide Receptor-C) Modulates the Progression of Angiotensin II-Mediated Atrial Fibrillation and Atrial Remodeling in Mice. Circulation. Arrhythmia and Electrophysiology, 12, e006863.

    Article  CAS  PubMed  Google Scholar 

  15. Okazaki, H., Minamino, T., Tsukamoto, O., Kim, J., Okada, K., Myoishi, M., Wakeno, M., Takashima, S., Mochizuki, N., & Kitakaze, M. (2006). Angiotensin II type 1 receptor blocker prevents atrial structural remodeling in rats with hypertension induced by chronic nitric oxide inhibition. Hypertension Research : Official Journal of the Japanese Society of Hypertension, 29, 277–284.

    Article  CAS  Google Scholar 

  16. Li, D., Shinagawa, K., Pang, L., Leung, T. K., Cardin, S., Wang, Z., & Nattel, S. (2001). Effects of angiotensin-converting enzyme inhibition on the development of the atrial fibrillation substrate in dogs with ventricular tachypacing-induced congestive heart failure. Circulation, 104, 2608–2614.

    Article  CAS  PubMed  Google Scholar 

  17. Kaplinsky, E. (2016). Sacubitril/valsartan in heart failure: latest evidence and place in therapy. Therapeutic Advances in Chronic Disease, 7, 278–290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. McMurray, J. J., Packer, M., Desai, A. S., Gong, J., Lefkowitz, M. P., Rizkala, A. R., Rouleau, J. L., Shi, V. C., Solomon, S. D., Swedberg, K., & Zile, M. R. (2014). Angiotensin-neprilysin inhibition versus enalapril in heart failure. The New England Journal of Medicine, 371, 993–1004.

    Article  PubMed  Google Scholar 

  19. Chang, P. C., Wo, H. T., Lee, H. L., Lin, S. F., Chu, Y., Wen, M. S., & Chou, C. C. (2020). Sacubitril/Valsartan Therapy Ameliorates Ventricular Tachyarrhythmia Inducibility in a Rabbit Myocardial Infarction Model. Journal of Cardiac Failure, 26, 527–537.

    Article  PubMed  Google Scholar 

  20. Vaskova, E., Ikeda, G., Tada, Y., Wahlquist, C., Mercola, M., & Yang, P. C. (2020). Sacubitril/Valsartan Improves Cardiac Function and Decreases Myocardial Fibrosis Via Downregulation of Exosomal miR-181a in a Rodent Chronic Myocardial Infarction Model. Journal of the American Heart Association, 9, e015640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Burke, R. M., Lighthouse, J. K., Mickelsen, D. M., & Small, E. M. (2019). Sacubitril/Valsartan Decreases Cardiac Fibrosis in Left Ventricle Pressure Overload by Restoring PKG Signaling in Cardiac Fibroblasts. Circulation. Heart Failure, 12, e005565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li, X., Zhu, Q., Wang, Q., Zhang, Q., Zheng, Y., Wang, L., & Jin, Q. (2020). Protection of Sacubitril/Valsartan against Pathological Cardiac Remodeling by Inhibiting the NLRP3 Inflammasome after Relief of Pressure Overload in Mice. Cardiovascular Drugs and Therapy, 34, 629–640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wu, Q., Liu, H., Liao, J., Zhao, N., Tse, G., Han, B., Chen, L., Huang, Z., & Du, Y. (2020). Colchicine prevents atrial fibrillation promotion by inhibiting IL-1β-induced IL-6 release and atrial fibrosis in the rat sterile pericarditis model. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 129, 110384.

    Article  CAS  Google Scholar 

  24. Wang, W. W., Zhang, F. L., Chen, J. H., Chen, X. H., Fu, F. Y., Tang, M. R., & Chen, L. L. (2015). Telmisartan reduces atrial arrhythmia susceptibility through the regulation of RAS-ERK and PI3K-Akt-eNOS pathways in spontaneously hypertensive rats. Canadian Journal of Physiology and Pharmacology, 93, 657–665.

    Article  CAS  PubMed  Google Scholar 

  25. Wang, Q., Yu, Y., Zhang, P., Chen, Y., Li, C., Chen, J., Wang, Y., & Li, Y. (2017). The crucial role of activin A/ALK4 pathway in the pathogenesis of Ang-II-induced atrial fibrosis and vulnerability to atrial fibrillation. Basic Research in Cardiology, 112, 47.

    Article  CAS  PubMed  Google Scholar 

  26. Rog-Zielinska, E. A., Norris, R. A., Kohl, P., & Markwald, R. (2016). The Living Scar--Cardiac Fibroblasts and the Injured Heart. Trends in Molecular Medicine, 22, 99–114.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Nguyen, T. P., Qu, Z., & Weiss, J. N. (2014). Cardiac fibrosis and arrhythmogenesis: the road to repair is paved with perils. Journal of Molecular and Cellular Cardiology, 70, 83–91.

    Article  CAS  PubMed  Google Scholar 

  28. Sestito, A. (2011). Hypertension therapy and cardiovascular protection. Effects of angiotensin II receptor block with Valsartan. European Review for Medical and Pharmacological Sciences, 15, 1247–1255.

    CAS  PubMed  Google Scholar 

  29. Sezai, A., Iida, M., Yoshitake, I., Wakui, S., Osaka, S., Kimura, H., Yaoita, H., Hata, H., Shiono, M., Nakai, T., Takayama, T., Kunimoto, S., Kasamaki, Y., & Hirayama, A. (2015). Carperitide and atrial fibrillation after coronary bypass grafting: the Nihon University working group study of low-dose HANP infusion therapy during cardiac surgery trial for postoperative atrial fibrillation. Circulation. Arrhythmia and Electrophysiology, 8, 546–553.

    Article  CAS  PubMed  Google Scholar 

  30. Mentzer Jr., R. M., Oz, M. C., Sladen, R. N., Graeve, A. H., Hebeler Jr., R. F., Luber Jr., J. M., & Smedira, N. G. (2007). Effects of perioperative nesiritide in patients with left ventricular dysfunction undergoing cardiac surgery:the NAPA Trial. Journal of the American College of Cardiology, 49, 716–726.

    Article  CAS  PubMed  Google Scholar 

  31. Li, L. Y., Lou, Q., Liu, G. Z., Lv, J. C., Yun, F. X., Li, T. K., Yang, W., Zhao, H. Y., Zhang, L., Bai, N., Zhan, C. C., Yu, J., Zang, Y. X., & Li, W. M. (2020). Sacubitril/valsartan attenuates atrial electrical and structural remodelling in a rabbit model of atrial fibrillation. European Journal of Pharmacology, 881, 173120.

    Article  CAS  PubMed  Google Scholar 

  32. Suo, Y., Yuan, M., Li, H., Zhang, Y., Li, Y., Fu, H., Han, F., Ma, C., Wang, Y., Bao, Q., & Li, G. (2019). Sacubitril/Valsartan Improves Left Atrial and Left Atrial Appendage Function in Patients With Atrial Fibrillation and in Pressure Overload-Induced Mice. Frontiers in Pharmacology, 10, 1285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fujisaki, H., Ito, H., Hirata, Y., Tanaka, M., Hata, M., Lin, M., Adachi, S., Akimoto, H., Marumo, F., & Hiroe, M. (1995). Natriuretic peptides inhibit angiotensin II-induced proliferation of rat cardiac fibroblasts by blocking endothelin-1 gene expression. The Journal of Clinical Investigation, 96, 1059–1065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. von Lueder, T. G., Wang, B. H., Kompa, A. R., Huang, L., Webb, R., Jordaan, P., Atar, D., & Krum, H. (2015). Angiotensin receptor neprilysin inhibitor LCZ696 attenuates cardiac remodeling and dysfunction after myocardial infarction by reducing cardiac fibrosis and hypertrophy. Circulation. Heart Failure, 8, 71–78.

    Article  Google Scholar 

  35. Suematsu, Y., Miura, S., Goto, M., Matsuo, Y., Arimura, T., Kuwano, T., Imaizumi, S., Iwata, A., Yahiro, E., & Saku, K. (2016). LCZ696, an angiotensin receptor-neprilysin inhibitor, improves cardiac function with the attenuation of fibrosis in heart failure with reduced ejection fraction in streptozotocin-induced diabetic mice. European Journal of Heart Failure, 18, 386–393.

    Article  CAS  PubMed  Google Scholar 

  36. Maki, T., Horio, T., Yoshihara, F., Suga, S., Takeo, S., Matsuo, H., & Kangawa, K. (2000). Effect of neutral endopeptidase inhibitor on endogenous atrial natriuretic peptide as a paracrine factor in cultured cardiac fibroblasts. British Journal of Pharmacology, 131, 1204–1210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kirchhof, P., & Fabritz, L. (2014). Of hammers and screws: renin-angiotensin-aldosterone system inhibition to prevent atrial fibrillation in patients with hypertension. European Heart Journal, 35, 1169–1171.

    Article  PubMed  Google Scholar 

  38. Biernacka, A., Dobaczewski, M., & Frangogiannis, N. G. (2011). TGF-β signaling in fibrosis. Growth Factors, 29, 196–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ge, Q., Zhao, L., Ren, X. M., Ye, P., & Hu, Z. Y. (2019). LCZ696, an angiotensin receptor-neprilysin inhibitor, ameliorates diabetic cardiomyopathy by inhibiting inflammation, oxidative stress and apoptosis. Experimental Biology and Medicine (Maywood, N.J.), 244, 1028–1039.

    Article  CAS  Google Scholar 

  40. Togashi, N., Maeda, T., Yoshida, H., Koyama, M., Tanaka, M., Furuhashi, M., Shimamoto, K., & Miura, T. (2012). Angiotensin II receptor activation in youth triggers persistent insulin resistance and hypertension--a legacy effect? Hypertension Research : Official Journal of the Japanese Society of Hypertension, 35, 334–340.

    Article  CAS  Google Scholar 

  41. Kopacz, A., Werner, E., Grochot-Przęczek, A., Klóska, D., Hajduk, K., Neumayer, C., Józkowicz, A., & Piechota-Polanczyk, A. (2020). Simvastatin Attenuates Abdominal Aortic Aneurysm Formation Favoured by Lack of Nrf2 Transcriptional Activity. Oxidative Medicine and Cellular Longevity, 2020, 6340190.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Torrado, J., Cain, C., Mauro, A. G., Romeo, F., Ockaili, R., Chau, V. Q., Nestler, J. A., Devarakonda, T., Ghosh, S., Das, A., & Salloum, F. N. (2018). Sacubitril/Valsartan Averts Adverse Post-Infarction Ventricular Remodeling and Preserves Systolic Function in Rabbits. Journal of the American College of Cardiology, 72, 2342–2356.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by Grants from the National Natural Science Foundation of China (Nos. 81700271), S&T Program of Hebei (Nos. H2018105054).

Author information

Authors and Affiliations

Authors

Contributions

Chang-yi Li, Song-nan Li, and Lei Zhao conceived and planned the experiments. Song-nan Li, Jing-rui Zhang, and Hui Xi carried out the experiments. Song-nan Li, Chang-yi Li, and Lei Zhao contributed to the interpretation of the results. Song-nan Li and Jing-rui Zhang took the lead in writing the manuscript. All authors have read and approved the final manuscript.

Corresponding authors

Correspondence to Chang-yi Li or Lei Zhao.

Ethics declarations

Ethics Approval and Consent to Participate

All experimental procedures were conducted in compliance with both the Animal Care and Use Committee of Capital Medical University and the Guide for the Care and Use of Laboratory Animals published by the National Institutes of Health (the 8th Edition, NRC 2011). This article does not contain any studies with human participants performed by any of the authors.

Conflict of Interest

The authors declare no competing interests.

Additional information

Associate Editor Nicola Smart oversaw the review of this article

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Sn., Zhang, Jr., Zhou, L. et al. Sacubitril/Valsartan Decreases Atrial Fibrillation Susceptibility by Inhibiting Angiotensin II-Induced Atrial Fibrosis Through p-Smad2/3, p-JNK, and p-p38 Signaling Pathways. J. of Cardiovasc. Trans. Res. 15, 131–142 (2022). https://doi.org/10.1007/s12265-021-10137-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-021-10137-5

Keywords

Navigation