Skip to main content

Advertisement

Log in

Copper Preserves Vasculature Structure and Function by Protecting Endothelial Cells from Apoptosis in Ischemic Myocardium

  • Original Article
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

The present study was undertaken to investigate whether Cu protects vasculatures from ischemic injury in the heart. C57/B6 mice were introduced to myocardial ischemia (MI) by permanent ligation of the left anterior descending (LAD) coronary artery. Two hours post-LAD ligation, mice were intravenously injected with a Cu-albumin (Cu-alb) solution, or saline as control. At 1, 4, or 7 days post-MI, hearts were collected for further analysis. A dramatic decrease in CD31-positive endothelial cells concomitantly with abundant apoptosis, along with obstruction of blood flow, was observed in ischemic myocardium 1 day post-MI. The early Cu-alb treatment protected CD31-positive cells from apoptosis, along with a preservation of micro-vessels and a decrease in infarct size. This early vasculature preservation ensured myocardial blood perfusion and protected cardiac contractile function until 28 days post-MI. This strategy of Cu-alb treatment immediately following MI would help develop a therapeutic approach for acute heart attack patients in a clinical setting.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AAS:

Atomic absorption spectrometry

BSA:

Bovine serum albumin

CCS-1:

Cu chaperone for superoxide dismutase-1

Cu:

Copper

Cu-alb:

Cu-albumin

ECs:

Endothelial cells

EF:

Ejection fraction

FS:

Fractional shortening

HIF-1:

Hypoxia-inducible factor-1

HSA:

Human serum albumin

IA:

Ischemic area

LAD:

Left anterior descending of coronary artery

LVEDV:

Left ventricular end-diastolic volume

LVESV:

Left ventricular end-systolic volume

LVIDd:

Left ventricular internal diameter at diastolic phase

LVIDs:

Left ventricular internal diameter at systolic phase

MI:

Myocardial ischemia

OCT:

Optimal cutting temperature gel

ROS:

Reactive oxygen species

RM:

Remote myocardium from ischemia

TUNEL:

Terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling assay

References

  1. Frangogiannis, N. G. (2015). Pathophysiology of myocardial infarction. Comprehensive Physiology, 5(4), 1841–1875. https://doi.org/10.1002/cphy.c150006.

    Article  PubMed  Google Scholar 

  2. Dong, Y., Chen, H., Gao, J., Liu, Y., Li, J., & Wang, J. (2019). Molecular machinery and interplay of apoptosis and autophagy in coronary heart disease. Journal of Molecular and Cellular Cardiology, 136, 27–41. https://doi.org/10.1016/j.yjmcc.2019.09.001.

    Article  CAS  PubMed  Google Scholar 

  3. McAuslan, B. R., & Reilly, W. (1980). Endothelial cell phagokinesis in response to specific metal ions. Experimental Cell Research, 130(1), 147–157. https://doi.org/10.1016/0014-4827(80)90051-8.

    Article  CAS  PubMed  Google Scholar 

  4. Hu, G. F. (1998). Copper stimulates proliferation of human endothelial cells under culture. Journal of Cellular Biochemistry, 69(3), 326–335. https://doi.org/10.1002/(sici)1097-4644(19980601)69:3<326::aid-jcb10>3.0.co;2-a.

    Article  CAS  PubMed  Google Scholar 

  5. Li, Q. F., Ding, X. Q., & Kang, Y. J. (2014). Copper promotion of angiogenesis in isolated rat aortic ring: Role of vascular endothelial growth factor. The Journal of Nutritional Biochemistry, 25(1), 44–49. https://doi.org/10.1016/j.jnutbio.2013.08.013.

    Article  CAS  PubMed  Google Scholar 

  6. Tapiero, H., Townsend, D. M., & Tew, K. D. (2003). Trace elements in human physiology and pathology. Copper. Biomedicine & Pharmacotherapy, 57(9), 386–398. https://doi.org/10.1016/s0753-3322(03)00012-x.

    Article  CAS  Google Scholar 

  7. Fukai, T., Ushio-Fukai, M., & Kaplan, J. H. (2018). Copper transporters and copper chaperones: Roles in cardiovascular physiology and disease. American Journal of Physiology. Cell Physiology, 315(2), C186–C201. https://doi.org/10.1152/ajpcell.00132.2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Heller, L. J., Mohrman, D. E., & Prohaska, J. R. (2000). Decreased passive stiffness of cardiac myocytes and cardiac tissue from copper-deficient rat hearts. American Journal of Physiology. Heart and Circulatory Physiology, 278(6), H1840–H1847. https://doi.org/10.1152/ajpheart.2000.278.6.H1840.

    Article  CAS  PubMed  Google Scholar 

  9. Elsherif, L., Ortines, R. V., Saari, J. T., & Kang, Y. J. (2003). Congestive heart failure in copper-deficient mice. Experimental Biology and Medicine (Maywood, N.J.), 228(7), 811–817. https://doi.org/10.1177/15353702-0322807-06.

    Article  CAS  Google Scholar 

  10. Rodriguez, C., & Martinez-Gonzalez, J. (2019). The role of lysyl oxidase enzymes in cardiac function and remodeling. Cells, 8(12). https://doi.org/10.3390/cells8121483.

  11. Horn, D., & Barrientos, A. (2008). Mitochondrial copper metabolism and delivery to cytochrome c oxidase. IUBMB Life, 60(7), 421–429. https://doi.org/10.1002/iub.50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zuo, X., Xie, H., Dong, D., Jiang, N., Zhu, H., & Kang, Y. J. (2010). Cytochrome c oxidase is essential for copper-induced regression of cardiomyocyte hypertrophy. Cardiovascular Toxicology, 10(3), 208–215. https://doi.org/10.1007/s12012-010-9080-0.

    Article  CAS  PubMed  Google Scholar 

  13. Feng, W., Ye, F., Xue, W., Zhou, Z., & Kang, Y. J. (2009). Copper regulation of hypoxia-inducible factor-1 activity. Molecular Pharmacology, 75(1), 174–182. https://doi.org/10.1124/mol.108.051516.

    Article  CAS  PubMed  Google Scholar 

  14. Zhang, Z., Qiu, L., Lin, C., Yang, H., Fu, H., Li, R., et al. (2014). Copper-dependent and -independent hypoxia-inducible factor-1 regulation of gene expression. Metallomics, 6(10), 1889–1893. https://doi.org/10.1039/c4mt00052h.

    Article  CAS  PubMed  Google Scholar 

  15. Liu, X., Zhang, W., Wu, Z., Yang, Y., & Kang, Y. J. (2018). Copper levels affect targeting of hypoxia-inducible factor 1alpha to the promoters of hypoxia-regulated genes. The Journal of Biological Chemistry, 293(38), 14669–14677. https://doi.org/10.1074/jbc.RA118.001764.

    Article  CAS  PubMed  Google Scholar 

  16. Morrell, A., Tallino, S., Yu, L., & Burkhead, J. L. (2017). The role of insufficient copper in lipid synthesis and fatty-liver disease. IUBMB Life, 69(4), 263–270. https://doi.org/10.1002/iub.1613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hamilton, I. M., Gilmore, W. S., & Strain, J. J. (2000). Marginal copper deficiency and atherosclerosis. Biological Trace Element Research, 78(1-3), 179–189. https://doi.org/10.1385/BTER:78:1-3:179.

    Article  CAS  PubMed  Google Scholar 

  18. Klevay, L. M. (2000). Cardiovascular disease from copper deficiency--a history. The Journal of Nutrition, 130(2S Suppl), 489S–492S. https://doi.org/10.1093/jn/130.2.489S.

    Article  CAS  PubMed  Google Scholar 

  19. DiNicolantonio, J. J., Mangan, D., & O’Keefe, J. H. (2018). Copper deficiency may be a leading cause of ischaemic heart disease. Open Heart, 5(2), e000784. https://doi.org/10.1136/openhrt-2018-000784.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Galhardi, C. M., Diniz, Y. S., Faine, L. A., Rodrigues, H. G., Burneiko, R. C., Ribas, B. O., et al. (2004). Toxicity of copper intake: Lipid profile, oxidative stress and susceptibility to renal dysfunction. Food and Chemical Toxicology, 42(12), 2053–2060. https://doi.org/10.1016/j.fct.2004.07.020.

    Article  CAS  PubMed  Google Scholar 

  21. Hosseini, M. J., Shaki, F., Ghazi-Khansari, M., & Pourahmad, J. (2014). Toxicity of copper on isolated liver mitochondria: Impairment at complexes I, II, and IV leads to increased ROS production. Cell Biochemistry and Biophysics, 70(1), 367–381. https://doi.org/10.1007/s12013-014-9922-7.

    Article  CAS  PubMed  Google Scholar 

  22. Cervantes-Cervantes, M. P., Calderon-Salinas, J. V., Albores, A., & Munoz-Sanchez, J. L. (2005). Copper increases the damage to DNA and proteins caused by reactive oxygen species. Biological Trace Element Research, 103(3), 229–248. https://doi.org/10.1385/BTER:103:3:229.

    Article  CAS  PubMed  Google Scholar 

  23. Xie, H., & Kang, Y. J. (2009). Role of copper in angiogenesis and its medicinal implications. Current Medicinal Chemistry, 16(10), 1304–1314. https://doi.org/10.2174/092986709787846622.

    Article  CAS  PubMed  Google Scholar 

  24. Xiao, Y., Wang, T., Song, X., Yang, D., Chu, Q., & Kang, Y. J. (2020). Copper promotion of myocardial regeneration. Experimental Biology and Medicine (Maywood, N.J.), 245(10), 911–921. https://doi.org/10.1177/1535370220911604.

    Article  CAS  Google Scholar 

  25. Jiang, Y., Reynolds, C., Xiao, C., Feng, W., Zhou, Z., Rodriguez, W., et al. (2007). Dietary copper supplementation reverses hypertrophic cardiomyopathy induced by chronic pressure overload in mice. The Journal of Experimental Medicine, 204(3), 657–666. https://doi.org/10.1084/jem.20061943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mroczek-Sosnowska, N., Sawosz, E., Vadalasetty, K. P., Lukasiewicz, M., Niemiec, J., Wierzbicki, M., et al. (2015). Nanoparticles of copper stimulate angiogenesis at systemic and molecular level. International Journal of Molecular Sciences, 16(3), 4838–4849. https://doi.org/10.3390/ijms16034838.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Qiu, L., Ding, X., Zhang, Z., & Kang, Y. J. (2012). Copper is required for cobalt-induced transcriptional activity of hypoxia-inducible factor-1. The Journal of Pharmacology and Experimental Therapeutics, 342(2), 561–567. https://doi.org/10.1124/jpet.112.194662.

    Article  CAS  PubMed  Google Scholar 

  28. Zhang, W., Zhao, X., Xiao, Y., Chen, J., Han, P., Zhang, J., et al. (2016). The association of depressed angiogenic factors with reduced capillary density in the Rhesus monkey model of myocardial ischemia. Metallomics, 8(7), 654–662. https://doi.org/10.1039/c5mt00332f.

    Article  CAS  PubMed  Google Scholar 

  29. Wu, Z., Zhang, W., & Kang, Y. J. (2019). Copper affects the binding of HIF-1alpha to the critical motifs of its target genes. Metallomics, 11(2), 429–438. https://doi.org/10.1039/c8mt00280k.

    Article  CAS  PubMed  Google Scholar 

  30. Kang, Y. J., & Zheng, L. (2013). Rejuvenation: An integrated approach to regenerative medicine. [Review]. Regenerative Medicine Research, 1(1), 7. https://doi.org/10.1186/2050-490X-1-7.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Cochain, C., Channon, K. M., & Silvestre, J. S. (2013). Angiogenesis in the infarcted myocardium. Antioxidants & Redox Signaling, 18(9), 1100–1113. https://doi.org/10.1089/ars.2012.4849.

    Article  CAS  Google Scholar 

  32. Wirth, P. L., & Linder, M. C. (1985). Distribution of copper among components of human serum. Journal of the National Cancer Institute, 75(2), 277–284.

    CAS  PubMed  Google Scholar 

  33. Cheng, X., Hou, J., Liu, J., Sun, X., Sheng, Q., Han, P., et al. (2017). Safety evaluation of sevoflurane as anesthetic agent in mouse model of myocardial ischemic infarction. Cardiovascular Toxicology, 17(2), 150–156. https://doi.org/10.1007/s12012-016-9368-9.

    Article  CAS  PubMed  Google Scholar 

  34. Li, K., Li, C., Xiao, Y., Wang, T., & Kang, Y. J. (2018). The loss of copper is associated with the increase in copper metabolism MURR domain 1 in ischemic hearts of mice. Experimental Biology and Medicine (Maywood, N.J.), 243(9), 780–785. https://doi.org/10.1177/1535370218773055.

    Article  CAS  Google Scholar 

  35. Jayakumar, S., Micallef-Eynaud, P. D., Lyon, T. D., Cramb, R., Jilaihawi, A. N., & Prakash, D. (2005). Acquired copper deficiency following prolonged jejunostomy feeds. Annals of Clinical Biochemistry, 42(Pt 3), 227–231. https://doi.org/10.1258/0004563053857879.

    Article  CAS  PubMed  Google Scholar 

  36. Nair, A. B., & Jacob, S. (2016). A simple practice guide for dose conversion between animals and human. Journal of Basic and Clinical Pharmacy, 7(2), 27–31. https://doi.org/10.4103/0976-0105.177703.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Takagawa, J., Zhang, Y., Wong, M. L., Sievers, R. E., Kapasi, N. K., Wang, Y., et al. (2007). Myocardial infarct size measurement in the mouse chronic infarction model: Comparison of area- and length-based approaches. Journal of Applied Physiology (Bethesda, MD: 1985), 102(6), 2104–2111. https://doi.org/10.1152/japplphysiol.00033.2007.

    Article  Google Scholar 

  38. Kobayashi, K., Maeda, K., Takefuji, M., Kikuchi, R., Morishita, Y., Hirashima, M., et al. (2017). Dynamics of angiogenesis in ischemic areas of the infarcted heart. Scientific Reports, 7(1), 7156. https://doi.org/10.1038/s41598-017-07524-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Getz, J., Lin, D., & Medeiros, D. M. (2011). The cardiac copper chaperone proteins Sco1 and CCS are up-regulated, but Cox 1 and Cox4 are down-regulated, by copper deficiency. Biological Trace Element Research, 143(1), 368–377. https://doi.org/10.1007/s12011-010-8858-z.

    Article  CAS  PubMed  Google Scholar 

  40. Frangogiannis, N. G. (2006). The mechanistic basis of infarct healing. Antioxidants & Redox Signaling, 8(11-12), 1907–1939. https://doi.org/10.1089/ars.2006.8.1907.

    Article  CAS  Google Scholar 

  41. Zheng, L., Han, P., Liu, J., Li, R., Yin, W., Wang, T., et al. (2015). Role of copper in regression of cardiac hypertrophy. Pharmacology & Therapeutics, 148, 66–84. https://doi.org/10.1016/j.pharmthera.2014.11.014.

    Article  CAS  Google Scholar 

  42. Varga, I., Kyselovic, J., Galfiova, P., & Danisovic, L. (2017). The non-cardiomyocyte cells of the heart. Their possible roles in exercise-induced cardiac regeneration and remodeling. Advances in Experimental Medicine and Biology, 999, 117–136. https://doi.org/10.1007/978-981-10-4307-9_8.

    Article  PubMed  Google Scholar 

  43. Narayanan, G., Bharathidevi, S. R., Vuyyuru, H., Muthuvel, B., & Konerirajapuram Natrajan, S. (2013). CTR1 silencing inhibits angiogenesis by limiting copper entry into endothelial cells. PLoS One, 8(9), e71982. https://doi.org/10.1371/journal.pone.0071982.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Li, S., Xie, H., Li, S., & Kang, Y. J. (2012). Copper stimulates growth of human umbilical vein endothelial cells in a vascular endothelial growth factor-independent pathway. Experimental Biology and Medicine (Maywood, N.J.), 237(1), 77–82. https://doi.org/10.1258/ebm.2011.011267.

    Article  CAS  Google Scholar 

  45. Karginova, O., Weekley, C. M., Raoul, A., Alsayed, A., Wu, T., Lee, S. S., et al. (2019). Inhibition of copper transport induces apoptosis in triple-negative breast cancer cells and suppresses tumor angiogenesis. Molecular Cancer Therapeutics, 18(5), 873–885. https://doi.org/10.1158/1535-7163.MCT-18-0667.

    Article  CAS  PubMed  Google Scholar 

  46. Henry, N. L., Dunn, R., Merjaver, S., Pan, Q., Pienta, K. J., Brewer, G., et al. (2006). Phase II trial of copper depletion with tetrathiomolybdate as an antiangiogenesis strategy in patients with hormone-refractory prostate cancer. Oncology, 71(3-4), 168–175. https://doi.org/10.1159/000106066.

    Article  CAS  PubMed  Google Scholar 

  47. Moriguchi, M., Nakajima, T., Kimura, H., Watanabe, T., Takashima, H., Mitsumoto, Y., et al. (2002). The copper chelator trientine has an antiangiogenic effect against hepatocellular carcinoma, possibly through inhibition of interleukin-8 production. International Journal of Cancer, 102(5), 445–452. https://doi.org/10.1002/ijc.10740.

    Article  CAS  PubMed  Google Scholar 

  48. Brem, S., Grossman, S. A., Carson, K. A., New, P., Phuphanich, S., Alavi, J. B., et al. (2005). Phase 2 trial of copper depletion and penicillamine as antiangiogenesis therapy of glioblastoma. Neuro-Oncology, 7(3), 246–253. https://doi.org/10.1215/S1152851704000869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Li, C., Wang, T., Xiao, Y., Li, K., Meng, X., & James Kang, Y. (2021). COMMD1 upregulation is involved in copper efflux from ischemic hearts. Experimental Biology and Medicine (Maywood, N.J.), 246(5), 607–616. https://doi.org/10.1177/1535370220969844.

    Article  CAS  Google Scholar 

  50. Liu, J., Chen, C., Liu, Y., Sun, X., Ding, X., Qiu, L., et al. (2018). Trientine selectively delivers copper to the heart and suppresses pressure overload-induced cardiac hypertrophy in rats. Experimental Biology and Medicine (Maywood, N.J.), 243(14), 1141–1152. https://doi.org/10.1177/1535370218813988.

    Article  CAS  Google Scholar 

  51. Zhang, L., Ward, M. L., Phillips, A. R., Zhang, S., Kennedy, J., Barry, B., et al. (2013). Protection of the heart by treatment with a divalent-copper-selective chelator reveals a novel mechanism underlying cardiomyopathy in diabetic rats. Cardiovascular Diabetology, 12, 123. https://doi.org/10.1186/1475-2840-12-123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Helsel, M. E., & Franz, K. J. (2015). Pharmacological activity of metal binding agents that alter copper bioavailability. Dalton Transactions, 44(19), 8760–8770. https://doi.org/10.1039/c5dt00634a.

    Article  CAS  PubMed  Google Scholar 

  53. Choo, X. Y., Liddell, J. R., Huuskonen, M. T., Grubman, A., Moujalled, D., Roberts, J., et al. (2018). Cu(II)(atsm) attenuates neuroinflammation. Frontiers in Neuroscience, 12, 668. https://doi.org/10.3389/fnins.2018.00668.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Soma, S., Latimer, A. J., Chun, H., Vicary, A. C., Timbalia, S. A., Boulet, A., et al. (2018). Elesclomol restores mitochondrial function in genetic models of copper deficiency. Proceedings of the National Academy of Sciences of the United States of America, 115(32), 8161–8166. https://doi.org/10.1073/pnas.1806296115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tural, K., Ozden, O., Bilgi, Z., Kubat, E., Ermutlu, C. S., Merhan, O., et al. (2020). The protective effect of betanin and copper on heart and lung in endorgan ischemia reperfusion injury. Bratislavské Lekárske Listy, 121(3), 211–217. https://doi.org/10.4149/BLL_2020_032.

    Article  CAS  PubMed  Google Scholar 

  56. Sharma, A. K., Kumar, A., Sahu, M., Sharma, G., Datusalia, A. K., & Rajput, S. K. (2018). Exercise preconditioning and low dose copper nanoparticles exhibits cardioprotection through targeting GSK-3beta phosphorylation in ischemia/reperfusion induced myocardial infarction. Microvascular Research, 120, 59–66. https://doi.org/10.1016/j.mvr.2018.06.003.

    Article  CAS  PubMed  Google Scholar 

  57. Srivastava, S., Blower, P. J., Aubdool, A. A., Hider, R. C., Mann, G. E., & Siow, R. C. (2016). Cardioprotective effects of Cu((II))ATSM in human vascular smooth muscle cells and cardiomyocytes mediated by Nrf2 and DJ-1. Scientific Reports, 6(1), 7. https://doi.org/10.1038/s41598-016-0012-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Linder, M. C., Wooten, L., Cerveza, P., Cotton, S., Shulze, R., & Lomeli, N. (1998). Copper transport. The American Journal of Clinical Nutrition, 67(5 Suppl), 965S–971S. https://doi.org/10.1093/ajcn/67.5.965S.

    Article  CAS  PubMed  Google Scholar 

  59. Moriya, M., Ho, Y. H., Grana, A., Nguyen, L., Alvarez, A., Jamil, R., et al. (2008). Copper is taken up efficiently from albumin and alpha2-macroglobulin by cultured human cells by more than one mechanism. American Journal of Physiology. Cell Physiology, 295(3), C708–C721. https://doi.org/10.1152/ajpcell.00029.2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zuo, X., Dong, D., Sun, M., Xie, H., & Kang, Y. J. (2013). Homocysteine restricts copper availability leading to suppression of cytochrome C oxidase activity in phenylephrine-treated cardiomyocytes. PLoS One, 8(6), e67549. https://doi.org/10.1371/journal.pone.0067549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sun, M., Zuo, X., Li, R., Wang, T., & Kang, Y. J. (2014). Vascular endothelial growth factor recovers suppressed cytochrome c oxidase activity by restoring copper availability in hypertrophic cardiomyocytes. Experimental Biology and Medicine (Maywood, N.J.), 239(12), 1671–1677. https://doi.org/10.1177/1535370214541910.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Jiaming Liu, Mr. Yi Ren, Ms. Qin Sheng, and Ms. Yuan Ma for assistance in animal care and surgery and thank Ms. Fang Nan for technique support in histological analysis.

Funding

This work was supported by China Postdoctoral Science Foundation (No. 2020M673261).

Author information

Authors and Affiliations

Authors

Contributions

Y.X., X.S., T.W., and Y.J.K. designed the experiments; Y.X., X.S., T.W., X.M., Q.F., X.S., and K.L. carried out the experiments, data analysis, and result interpretation; Y.J.K. and Y.X. drafted the manuscript; Y.J.K. revised the draft and approved the final version of the manuscript.

Corresponding author

Correspondence to Y. James Kang.

Ethics declarations

Ethics Approval

No human studies were carried out by the authors for this article. All institutional and national guidelines for the care and use of laboratory animals were followed and approved by Institutional Animal Care and Use Committee (IACUC) of Sichuan University West China Hospital (Approval No. 2020238A).

Conflict of Interest

The authors declare no competing interests.

Additional information

Associate Editor Nicola Smart oversaw the review of this article

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 4.57 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Y., Song, X., Wang, T. et al. Copper Preserves Vasculature Structure and Function by Protecting Endothelial Cells from Apoptosis in Ischemic Myocardium. J. of Cardiovasc. Trans. Res. 14, 1146–1155 (2021). https://doi.org/10.1007/s12265-021-10128-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-021-10128-6

Keywords

Navigation