Skip to main content

Advertisement

Log in

Effects of Estrogen on Cardiac mRNA and LncRNA Expression Profiles in Hypertensive Mice

  • Original Article
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Estrogen is a vascular protection factor and plays a protective role in the pathogenesis of gender differences in cardiovascular diseases. This study was to address the possible mechanisms that may explain the relationship between estradiol configuration—17β-estradiol (E2) and ventricular remodeling. Here, we show that a total of 1499 LncRNAs and 680 mRNAs significantly differently expressed were identified. This result indicates that estradiol has a global role in regulating heart gene expression profiles in female mice. Go and Pathway functional cluster analysis showed that the antagonism of E2 on cardiac remodeling and AngII-induced pathological changes in female mice may be related to physiological processes such as circadian rhythm disorder and ion channel dysfunction.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of Data and Materials

Not applicable.

Abbreviations

ACE:

angiotensin-converting enzyme

Ang II:

angiotensin II

AT1R:

angiotensin II type1 receptor

BP:

blood pressure

CVF:

collagen volume fraction

DBP:

diastolic blood pressure

E2 :

17β-estradiol

ERK:

extracellular signal-regulated kinase

FC:

fold change

FGFR:

fibroblast growth factor receptor

GO:

gene ontology

HE:

hematoxylin-eosin

HRT:

hormone replacement therapy

LncRNA:

long noncoding RNA

NADPH:

nicotinamide adenine dinucleotide phosphate

NOX:

anti-NADPH oxidase

NPNT:

renal surface protein

OVX:

ovariectomy

PBS:

phosphate-buffered saline

PI3K/Akt:

phosphoinositol 3-kinase/serine/threonine kinase

PVCA/LA:

perivascular collagen area/lumen area

qRT-PCR:

quantificational real-time polymerase chain reaction

RAAS:

renin-angiotensin-aldosterone system

ROS:

reactive oxygen species

SBP:

systolic blood pressure

Sham:

sham operation

TDLVMC:

transverse section of left ventricular myocytes

TGF-β1:

transforming growth factor-β1

T-SOD:

total superoxide dismutase

VSMC:

vascular smooth muscle cell

References

  1. Dedkov, E. I., Bogatyryov, Y., Pavliak, K., Santos, A. T., Chen, Y. F., Zhang, Y., & Pingitore, A. (2016). Sex-related differences in intrinsic myocardial properties influence cardiac function in middle-aged rats during infarction-induced left ventricular remodeling. Physiological Reports, 4(11).

  2. Hinojosa-Laborde, C., Lange, D. L., & Haywood, J. R. (2000). Role of female sex hormones in the development and reversal of dahl hypertension. Hypertension, 35(1 Pt 2), 484–489.

    Article  CAS  PubMed  Google Scholar 

  3. Xue, B., Pamidimukkala, J., & Hay, M. (2005). Sex differences in the development of angiotensin II-induced hypertension in conscious mice. American Journal of Physiology. Heart and Circulatory Physiology, 288(5), H2177–H2184.

    Article  CAS  PubMed  Google Scholar 

  4. Barton, M., Meyer, M. R., & Haas, E. (2007). Hormone replacement therapy and atherosclerosis in postmenopausal women: Does aging limit therapeutic benefits? Arteriosclerosis, Thrombosis, and Vascular Biology, 27(8), 1669–1672.

    Article  CAS  PubMed  Google Scholar 

  5. Maron, B. A., & Leopold, J. A. (2014). The role of the renin-angiotensin-aldosterone system in the pathobiology of pulmonary arterial hypertension (2013 Grover conference series). Pulmonary Circulation, 4(2), 200–210.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Suzuki, H., Motley, E. D., Frank, G. D., Utsunomiya, H., & Eguchi, S. (2005). Recent progress in signal transduction research of the angiotensin II type-1 receptor: protein kinases, vascular dysfunction and structural requirement. Current Medicinal Chemistry. Cardiovascular and Hematological Agents, 3(4), 305–322.

    Article  CAS  PubMed  Google Scholar 

  7. Sahar, S., Reddy, M. A., Wong, C., Meng, L., Wang, M., & Natarajan, R. (2007). Cooperation of SRC-1 and p300 with NF-kappaB and CREB in angiotensin II-induced IL-6 expression in vascular smooth muscle cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 27(7), 1528–1534.

    Article  CAS  PubMed  Google Scholar 

  8. Griendling, K. K., & Ushio-Fukai, M. (2000). Reactive oxygen species as mediators of angiotensin II signaling. Regulatory Peptides, 91(1–3), 21–27.

    Article  CAS  PubMed  Google Scholar 

  9. Miller Jr., F. J., Gutterman, D. D., Rios, C. D., Heistad, D. D., & Davidson, B. L. (1998). Superoxide production in vascular smooth muscle contributes to oxidative stress and impaired relaxation in atherosclerosis. Circulation Research, 82(12), 1298–1305.

    Article  CAS  PubMed  Google Scholar 

  10. Yang, L., Besschetnova, T. Y., Brooks, C. R., Shah, J. V., & Bonventre, J. V. (2010). Epithelial cell cycle arrest in G2/M mediates kidney fibrosis after injury. Nature Medicine, 16(5), 535–543 531p following 143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ji, H., Zheng, W., Wu, X., Liu, J., Ecelbarger, C. M., Watkins, R., Arnold, A. P., & Sandberg, K. (2010). Sex chromosome effects unmasked in angiotensin II-induced hypertension. Hypertension, 55(5), 1275–1282.

    Article  CAS  PubMed  Google Scholar 

  12. Sullivan, J. C., Bhatia, K., Yamamoto, T., & Elmarakby, A. A. (2010). Angiotensin (1-7) receptor antagonism equalizes angiotensin II-induced hypertension in male and female spontaneously hypertensive rats. Hypertension, 56(4), 658–666.

    Article  CAS  PubMed  Google Scholar 

  13. Novella, S., Heras, M., Hermenegildo, C., & Dantas, A. P. (2012). Effects of estrogen on vascular inflammation: a matter of timing. Arteriosclerosis, Thrombosis, and Vascular Biology, 32(8), 2035–2042.

    Article  CAS  PubMed  Google Scholar 

  14. Dubey, R. K., Imthurn, B., Zacharia, L. C., & Jackson, E. K. (2004). Hormone replacement therapy and cardiovascular disease: what went wrong and where do we go from here? Hypertension, 44(6), 789–795.

    Article  CAS  PubMed  Google Scholar 

  15. Kim, D., Lee, A. S., Jung, Y. J., Yang, K. H., Lee, S., Park, S. K., Kim, W., & Kang, K. P. (2014). Tamoxifen ameliorates renal tubulointerstitial fibrosis by modulation of estrogen receptor alpha-mediated transforming growth factor-beta1/Smad signaling pathway. Nephrology, Dialysis, Transplantation, 29(11), 2043–2053.

    Article  CAS  PubMed  Google Scholar 

  16. Stefanick, M. L., Anderson, G. L., Margolis, K. L., Hendrix, S. L., Rodabough, R. J., Paskett, E. D., Lane, D. S., Hubbell, F. A., Assaf, A. R., Sarto, G. E., et al. (2006). Effects of conjugated equine estrogens on breast cancer and mammography screening in postmenopausal women with hysterectomy. JAMA, 295(14), 1647–1657.

    Article  CAS  PubMed  Google Scholar 

  17. Veerus, P., Fischer, K., Hakama, M., Hemminki, E., & Trial, E. (2012). Results from a blind and a non-blind randomised trial run in parallel: experience from the Estonian Postmenopausal Hormone Therapy (EPHT) Trial. BMC Medical Research Methodology, 12, 44.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Johnson, K. C., Aragaki, A. K., Jackson, R., Reiner, A., Sandset, P. M., Rosing, J., Dahm, A. E., Rosendaal, F., Manson, J. E., Martin, L. W., et al. (2016). Tissue factor pathway inhibitor, activated protein C resistance, and risk of coronary heart disease due to combined estrogen plus progestin therapy. Arteriosclerosis, Thrombosis, and Vascular Biology, 36(2), 418–424.

    Article  CAS  PubMed  Google Scholar 

  19. Holdt, L. M., Beutner, F., Scholz, M., Gielen, S., Gabel, G., Bergert, H., Schuler, G., Thiery, J., & Teupser, D. (2010). ANRIL expression is associated with atherosclerosis risk at chromosome 9p21. Arteriosclerosis, Thrombosis, and Vascular Biology, 30(3), 620–627.

    Article  CAS  PubMed  Google Scholar 

  20. Zhao, P., Wu, H., Zhong, Z., Zhang, Q., Zhong, W., Li, B., Li, C., Liu, Z., & Yang, M. (2018). Expression profiles of long noncoding RNAs and mRNAs in peripheral blood mononuclear cells of patients with acute myocardial infarction. Medicine (Baltimore), 97(41), e12604.

    Article  CAS  Google Scholar 

  21. Vausort, M., Wagner, D. R., & Devaux, Y. (2014). Long noncoding RNAs in patients with acute myocardial infarction. Circulation Research, 115(7), 668–677.

    Article  CAS  PubMed  Google Scholar 

  22. Shen, T., Yang, C., Ding, L., Zhu, Y., Ruan, Y., Cheng, H., Qin, W., Huang, X., Zhang, H., Man, Y., et al. (2013). Tbx20 functions as an important regulator of estrogen-mediated cardiomyocyte protection during oxidative stress. International Journal of Cardiology, 168(4), 3704–3714.

    Article  PubMed  Google Scholar 

  23. Eddy, A. A. (2014). Overview of the cellular and molecular basis of kidney fibrosis. Kidney International Supplements (2011), 4(1), 2–8.

    Article  CAS  Google Scholar 

  24. Girdler, S. S., Hinderliter, A. L., Wells, E. C., Sherwood, A., Grewen, K. M., & Light, K. C. (2004). Transdermal versus oral estrogen therapy in postmenopausal smokers: Hemodynamic and endothelial effects. Obstetrics and Gynecology, 103(1), 169–180.

    Article  CAS  PubMed  Google Scholar 

  25. Olson, E. N. (2004). A decade of discoveries in cardiac biology. Nature Medicine, 10(5), 467–474.

    Article  CAS  PubMed  Google Scholar 

  26. Cave, A., Grieve, D., Johar, S., Zhang, M., & Shah, A. M. (2005). NADPH oxidase-derived reactive oxygen species in cardiac pathophysiology. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 360(1464), 2327–2334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lin, J. H., & Rydqvist, B. (1999). The mechanotransduction of the crayfish stretch receptor neurone can be differentially activated or inactivated by local anaesthetics. Acta Physiologica Scandinavica, 166(1), 65–74.

    Article  CAS  PubMed  Google Scholar 

  28. Costa, F. F. (2007). Non-coding RNAs: lost in translation? Gene, 386(1–2), 1–10.

    CAS  PubMed  Google Scholar 

  29. Chu, C., Qu, K., Zhong, F. L., Artandi, S. E., & Chang, H. Y. (2011). Genomic maps of long noncoding RNA occupancy reveal principles of RNA-chromatin interactions. Molecular Cell, 44(4), 667–678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ishii, N., Ozaki, K., Sato, H., Mizuno, H., Saito, S., Takahashi, A., Miyamoto, Y., Ikegawa, S., Kamatani, N., Hori, M., et al. (2006). Identification of a novel non-coding RNA, MIAT, that confers risk of myocardial infarction. Journal of Human Genetics, 51(12), 1087–1099.

    Article  CAS  PubMed  Google Scholar 

  31. Yan, B., Yao, J., Liu, J. Y., Li, X. M., Wang, X. Q., Li, Y. J., Tao, Z. F., Song, Y. C., Chen, Q., & Jiang, Q. (2015). lncRNA-MIAT regulates microvascular dysfunction by functioning as a competing endogenous RNA. Circulation Research, 116(7), 1143–1156.

    Article  CAS  PubMed  Google Scholar 

  32. Zhang, W., Chen, Y., Liu, P., Chen, J., Song, L., Tang, Y., Wang, Y., Liu, J., Hu, F. B., & Hui, R. (2012). Variants on chromosome 9p21.3 correlated with ANRIL expression contribute to stroke risk and recurrence in a large prospective stroke population. Stroke, 43(1), 14–21.

    Article  PubMed  CAS  Google Scholar 

  33. Zhou, X., Han, X., Wittfeldt, A., Sun, J., Liu, C., Wang, X., Gan, L. M., Cao, H., & Liang, Z. (2016). Long non-coding RNA ANRIL regulates inflammatory responses as a novel component of NF-kappaB pathway. RNA Biology, 13(1), 98–108.

    Article  PubMed  Google Scholar 

  34. Chiesa, N., De Crescenzo, A., Mishra, K., Perone, L., Carella, M., Palumbo, O., Mussa, A., Sparago, A., Cerrato, F., Russo, S., et al. (2012). The KCNQ1OT1 imprinting control region and non-coding RNA: new properties derived from the study of Beckwith-Wiedemann syndrome and Silver-Russell syndrome cases. Human Molecular Genetics, 21(1), 10–25.

    Article  PubMed  CAS  Google Scholar 

  35. Kuek, V., Yang, Z., Chim, S. M., Zhu, S., Xu, H., Chow, S. T., Tickner, J., Rosen, V., Erber, W., Li, X., et al. (2016). Corrigendum: NPNT is expressed by osteoblasts and mediates angiogenesis via the activation of extracellular signal-regulated kinase. Scientific Reports, 6, 37482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Miyazono, A., Yamada, A., Morimura, N., Takami, M., Suzuki, D., Kobayashi, M., Tezuka, K., Yamamoto, M., & Kamijo, R. (2007). TGF-beta suppresses POEM expression through ERK1/2 and JNK in osteoblasts. FEBS Letters, 581(27), 5321–5326.

    Article  CAS  PubMed  Google Scholar 

  37. Pavlou, D., & Kirmizis, A. (2016). Depletion of histone N-terminal-acetyltransferase Naa40 induces p53-independent apoptosis in colorectal cancer cells via the mitochondrial pathway. Apoptosis, 21(3), 298–311.

    Article  CAS  PubMed  Google Scholar 

  38. Keyes, K. T., Xu, J., Long, B., Zhang, C., Hu, Z., & Ye, Y. (2010). Pharmacological inhibition of PTEN limits myocardial infarct size and improves left ventricular function postinfarction. American Journal of Physiology. Heart and Circulatory Physiology, 298(4), H1198–H1208.

    Article  CAS  PubMed  Google Scholar 

  39. Wu, J., Li, L., Jiang, G., Zhan, H., & Wang, N. (2016). B-cell CLL/lymphoma 3 promotes glioma cell proliferation and inhibits apoptosis through the oncogenic STAT3 pathway. International Journal of Oncology, 49(6), 2471–2479.

    Article  CAS  PubMed  Google Scholar 

  40. Liu, D., Huang, L., Wang, Y., Wang, W., Wehrens, X. H., Belousova, T., Abdelrahim, M., DiMattia, G., & Sheikh-Hamad, D. (2012). Human stanniocalcin-1 suppresses angiotensin II-induced superoxide generation in cardiomyocytes through UCP3-mediated anti-oxidant pathway. PLoS One, 7(5), e36994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wollnik, F., & Turek, F. W. (1988). Estrous correlated modulations of circadian and ultradian wheel-running activity rhythms in LEW/Ztm rats. Physiology & Behavior, 43(3), 389–396.

    Article  CAS  Google Scholar 

  42. Labyak, S. E., & Lee, T. M. (1995). Estrus- and steroid-induced changes in circadian rhythms in a diurnal rodent, Octodon degus. Physiology & Behavior, 58(3), 573–585.

    Article  CAS  Google Scholar 

  43. Kobayashi, H., Yoshida, S., Sun, Y. J., Shirasawa, N., & Naito, A. (2016). Gastric 17beta-estradiol in portal vein and liver Esr1 make a circadian rhythm in systemic circulation in male rats. Endocrine, 53(2), 565–573.

    Article  CAS  PubMed  Google Scholar 

  44. Itoh, N., & Ornitz, D. M. (2011). Fibroblast growth factors: from molecular evolution to roles in development, metabolism and disease. Journal of Biochemistry, 149(2), 121–130.

    Article  CAS  PubMed  Google Scholar 

  45. Aoyagi, T., & Matsui, T. (2011). Phosphoinositide-3 kinase signaling in cardiac hypertrophy and heart failure. Current Pharmaceutical Design, 17(18), 1818–1824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Campbell, S. E., & Katwa, L. C. (1997). Angiotensin II stimulated expression of transforming growth factor-beta1 in cardiac fibroblasts and myofibroblasts. Journal of Molecular and Cellular Cardiology, 29(7), 1947–1958.

    Article  CAS  PubMed  Google Scholar 

  47. Schultz Jel, J., Witt, S. A., Glascock, B. J., Nieman, M. L., Reiser, P. J., Nix, S. L., Kimball, T. R., & Doetschman, T. (2002). TGF-beta1 mediates the hypertrophic cardiomyocyte growth induced by angiotensin II. The Journal of Clinical Investigation, 109(6), 787–796.

    Article  PubMed  Google Scholar 

  48. Hua, K., Feng, W., Cao, Q., Zhou, X., Lu, X., & Feng, Y. (2008). Estrogen and progestin regulate metastasis through the PI3K/AKT pathway in human ovarian cancer. International Journal of Oncology, 33(5), 959–967.

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 81800363), the Provincial Natural Science Foundation of Fujian (No. 2018J01240), the Fujian Provincial Medical Innovation Project (No. 2018-CX-4), the Funding Scheme for Young and Middle-aged Talents Development Projects (No. 2018-XQN-24) in Fujian Provincial Health Family Planning Commission, and the Joint Fund for Research and Construction of High-Level Hospitals in Fujian Provincial Hospital (No. 2017LHJJ03).

Author information

Authors and Affiliations

Authors

Contributions

ZJK and CH conceived and designed the study. ZJK and WH performed the experiments. ZJK wrote the paper. CH reviewed and edited the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Hui Chen.

Ethics declarations

Competing Interests

The authors declare that they have no competing interests.

Human Subjects/Informed Consent

No human studies were carried out by the authors for this article.

Ethics Approval and Consent to Participate

All institutional and national guidelines for the care and use of laboratory animals were approved by the Animal Ethics Committee of Fujian Provincial Hospital (Fujian, China).

Consent for Publication

Not applicable.

Additional information

Associate Editor Junjie Xiao oversaw the review of this article

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, J., Wang, H. & Chen, H. Effects of Estrogen on Cardiac mRNA and LncRNA Expression Profiles in Hypertensive Mice. J. of Cardiovasc. Trans. Res. 14, 706–727 (2021). https://doi.org/10.1007/s12265-020-09990-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-020-09990-7

Keywords

Navigation