Skip to main content
Log in

Role of NLRP3-Inflammasome/Caspase-1/Galectin-3 Pathway on Atrial Remodeling in Diabetic Rabbits

  • Original Article
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Both diabetes mellitus (DM) and atrial fibrillation (AF) are usually associated with enhanced inflammatory response. The effect of the “NACHT, LRR and PYD domain containing protein 3” (NLRP3)-inflammasome/caspase-1/galectin-3 pathway and the potential benefits of NLRP3-inflammasome inhibitor glibenclamide (GLB) on atrial remodeling in the DM state are still unknown. Here, we demonstrated that higher AF inducibility and conduction inhomogeneity, slower epicardial conduction velocity, and increased amount of fibrosis in diabetic rabbits as against normal ones were markedly reduced by GLB. Atrial caspase-1 activity as well as serum IL-1β and IL-18 levels were elevated in diabetic animals but suppressed by GLB. Moreover, GLB decreased the DM-induced protein expression enhancement of NLRP3, Gal-3, TGF-β1, and CaV1.2 according to western blot analysis. Summarily, our findings indicate that the NLRP3-inflammasome/caspase-1/Gal-3 signaling pathway is related to the pathogenesis of AF in the diabetic state. NLRP3-inflammasome inhibitor GLB prevents AF inducibility and moderates atrial structural remodeling in DM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Harada, M., Van Wagoner, D. R., & Nattel, S. (2015). Role of inflammation in atrial fibrillation pathophysiology and management. Circulation Journal, 79(3), 495–502.

    Article  Google Scholar 

  2. Korantzopoulos, P., Letsas, K. P., Tse, G., Fragakis, N., Goudis, C. A., & Liu, T. (2018). Inflammation and atrial fibrillation: a comprehensive review. Journal of Arrhythm, 34(4), 394–401.

    Article  Google Scholar 

  3. Karam, B. S., Chavez-Moreno, A., Koh, W., Akar, J. G., & Akar, F. G. (2017). Oxidative stress and inflammation as central mediators of atrial fibrillation in obesity and diabetes. Cardiovascular Diabetology, 16(1), 120.

    Article  Google Scholar 

  4. Hu, Y., Chen, Y., Lin, Y., & Chen, S. (2015). Inflammation and the pathogenesis of atrial fibrillation. Nature Reviews Cardiology, 12, 230–243.

    Article  CAS  Google Scholar 

  5. Scott Jr., L., Li, N., & Dobrev, D. (2019). Role of inflammatory signaling in atrial fibrillation. International Journal of Cardiology, 287, 195–200.

    Article  Google Scholar 

  6. Hernandez-Romero, D., Vilchez, J. A., Lahoz, A., et al. (2017). Galectin-3 as a marker of interstitial atrial remodelling involved in atrial fibrillation. Scientific Reports, 7, 40378.

    Article  CAS  Google Scholar 

  7. Luan, Y., Guo, Y., Li, S., et al. (2010). Interleukin-18 among atrial fibrillation patients in the absence of structural heart disease. Europace : European pacing, arrhythmias, and cardiac electrophysiology, 12, 1713–1718.

    Article  Google Scholar 

  8. Yao, C., Veleva, T., Scott Jr., L., et al. (2018). Enhanced cardiomyocyte NLRP3 inflammasome signaling promotes atrial fibrillation. Circulation, 138(20), 2227–2242.

    Article  CAS  Google Scholar 

  9. Chen, G., Chelu, M. G., Dobrev, D., & Li, N. (2018). Cardiomyocyte inflammasome signaling in cardiomyopathies and atrial fibrillation: mechanisms and potential therapeutic implications. Frontiers in Physiology, 9, 1115.

    Article  Google Scholar 

  10. Huxley, R. R., Filion, K. B., Konety, S., & Alonso, A. (2011). Meta-analysis of cohort and case-control studies of type 2 diabetes mellitus and risk of atrial fibrillation. The American Journal of Cardiology, 108, 56–62.

    Article  Google Scholar 

  11. Staerk, L., Sherer, J. A., Ko, D., Benjamin, E. J., & Helm, R. H. (2017). Atrial fibrillation: epidemiology, pathophysiology, and clinical outcomes. Circulation Research, 120(9), 1501–1517.

    Article  CAS  Google Scholar 

  12. Bohne, L. J., Johnson, D., Rose, R. A., Wilton, S. B., & Gillis, A. M. (2019). The association between diabetes mellitus and atrial fibrillation: clinical and mechanistic insights. Frontiers in Physiology, 10, 135.

    Article  Google Scholar 

  13. Xu, J., He, Y., Luo, B. B., et al. (2017). Correlation study between NLRP3 inflammasome and atrial fibrillation. Chinese Circulation Journal, 32(1), 72–76.

    Google Scholar 

  14. Wan, Y., Xu, L., Wang, Y., Tuerdi, N., Ye, M., & Qi, R. (2018). Preventive effects of astragaloside IV and its active sapogenin cycloastragenol on cardiac fibrosis of mice by inhibiting the NLRP3 inflammasome. European Journal of Pharmacology, 833, 545–554.

    Article  CAS  Google Scholar 

  15. Lamkanfi, M., Mueller, J. L., Vitari, A. C., et al. (2009). Glyburide inhibits the cryopyrin/Nalp3 inflammasome. The Journal of Cell Biology, 187, 61–70.

    Article  CAS  Google Scholar 

  16. Cai, J., Lu, S., Yao, Z., et al. (2014). Glibenclamide attenuates myocardial injury by lipopoly saccharides in streptozotocin-induced diabetic mice. Cardiovascular Diabetology, 13, 106.

    Article  Google Scholar 

  17. Liu, C., Liu, R., Fu, H., et al. (2017). Pioglitazone attenuates atrial remodeling and vulnerability to atrial fibrillation in alloxan-induced diabetic rabbits. Cardiovascular Therapeutics, 35(5), e38–e38.

    Article  Google Scholar 

  18. Liu, C., Liu, R., Wu, X., et al. (2018). Effects of peroxisome proliferator-activated receptor gamma-toll-like receptor 4-tumor necrosis factor-alpha targeted pathway on hyperglycemia induced myocardium inflammation and oxidative stress. Chinese Journal of Critical Care Medicine, 30, 416–421.

    Google Scholar 

  19. Baudino, T. A., Carver, W., Giles, W., & Borg, T. K. (2006). Cardiac fibroblasts: friend or foe? American Journal of Physiology. Heart and Circulatory Physiology, 291, H1015–H1026.

    Article  CAS  Google Scholar 

  20. Jo, E. K., Kim, J. K., Shin, D. M., et al. (2016). Molecular mechanisms regulating NLRP3 inflammasome activation. Cellular & Molecular Immunology, 13(2), 148–159.

    Article  CAS  Google Scholar 

  21. Toldo, S., Mezzaroma, E., McGeough, M. D., et al. (2015). Independent roles of the priming and the triggering of the NLRP3 inflammasome in the heart. Cardiovascular Research, 105(2), 203–212.

    Article  CAS  Google Scholar 

  22. Grebe, A., Hoss, F., & Latz, E. (2018). NLRP3 inflammasome and the IL-1 pathway in atherosclerosis. Circulation Research, 122(12), 1722–1740.

    Article  CAS  Google Scholar 

  23. Zhang, X., Zhang, Z., Yang, Y., et al. (2018). Alogliptin prevents diastolic dysfunction and preserves left ventricular mitochondrial function in diabetic rabbits. Cardiovascular Diabetology, 17(1), 160.

    Article  CAS  Google Scholar 

  24. Jiang, D., Xiao, B., Yang, D., et al. (2004). RyR2 mutation linked to ventricular tachycardia and sudden death reduce the threshold for store-overload-induced Ca2+ release. Proceedings of the National Academy of Sciences of the United States of America, 101(35), 13062–13067.

    Article  CAS  Google Scholar 

  25. Hoyt, L. R., Randall, M. J., Ather, J. L., et al. (2017). Mitochondrial ROS induced by chronic ethanol exposure promote hyper-activation of the NLRP3 inflammasome. Redox Biology, 12, 883–896.

    Article  CAS  Google Scholar 

  26. Ren, J. D., Wu, X. B., Jiang, R., et al. (2016). Molecular hydrogen inhibits lipopolysaccharide-triggered NLRP3 inflammasome activation in macrophages by targeting the mitochondrial reactive oxygen species. Biochimica et Biophysica Acta, 1863(1), 50–55.

    Article  CAS  Google Scholar 

  27. Sayed, A. A., Khalifa, M., & Abd el-Latif, F. F. (2012). Fenugreek attenuation of diabetic nephropathy in alloxan-diabetic rats: attenuation of diabetic nephropathy in rats. Journal of Physiology and Biochemistry, 68, 263–269.

    Article  Google Scholar 

  28. Qiu, J., Zhao, J., Li, J., Liang, X., et al. (2016). NADPH oxidase inhibitor apocynin prevents atrial remodeling in alloxan-induced diabetic rabbits. International Journal of Cardiology, 221, 812–819.

    Article  Google Scholar 

  29. Yang, Y., Zhao, J., Qiu, J., et al. (2018). Xanthine oxidase inhibitor allopurinol prevents oxidative stress-mediated atrial remodeling in alloxan-induced diabetes mellitus rabbits. Journal of the American Heart Association, 7(10), e008807.

    PubMed  PubMed Central  Google Scholar 

  30. Wan, Y., Xu, L., Wang, Y., et al. (2018). Preventive effects of astragaloside IV and its active sapogenin cycloastragenol on cardiac fibrosis of mice by inhibiting the NLRP3 inflammasome. European Journal of Pharmacology, 883, 545.

    Article  Google Scholar 

  31. Yue, L., Xie, J., & Nattel, S. (2011). Molecular determinants of cardiac fibroblast electrical function and therapeutic implications for atrial fibrillation. Cardiovascular Research, 89, 744–753.

    Article  CAS  Google Scholar 

  32. Shen, H., Wang, J., Min, J., et al. (2018). Activation of TGF-β1/α-SMA/Col I profibrotic pathway in fibroblasts by galectin-3 contributes to atrial fibrosis in experimental models and patients. Cellular Physiology and Biochemistry, 47(2), 851–863.

    Article  CAS  Google Scholar 

  33. Takemoto, Y., Ramirez, R. J., Yokokawa, M., et al. (2016). Galectin-3 regulates atrial fibrillation remodeling and predicts catheter ablation outcomes. JACC Basic to Translational Science, 1(3), 143–154.

    Article  Google Scholar 

  34. Gonzalez, G. E., Rhaleb, N. E., Nakagawa, P., et al. (2014). N-Acetyl-serylaspartyl-lysyl-proline reduces cardiac collagen cross-linking and inflammation in angiotensin II-induced hypertensive rats. Clinical Science (London, England), 126(1), 8594.

    Article  Google Scholar 

  35. Ridker, P. M., Everett, B. M., Thuren, T., et al. (2017). Antiinflammatory therapy with canakinumab for atherosclerotic disease. The New England Journal of Medicine, 377, 1119–1131.

    Article  CAS  Google Scholar 

  36. Zhang, G., Lin, X., Zhang, S., Xiu, H., Pan, C., & Cui, W. (2017). A protective role of glibenclamide in inflammation-associated injury. Mediators of Inflammation, 3578702.

  37. Tamura, K., Ishikawa, G., Yoshie, M., et al. (2017). Glibenclamide inhibits NLRP3 inflammasome-mediated IL-1β secretion in human trophoblasts. Journal of Pharmacological Sciences, 135(2).

  38. Hou, L., Yang, Z., Wang, Z., et al. (2018). NLRP3/ASC-mediated alveolar macrophage pyroptosis enhances HMGB1 secretion in acute lung injury induced by cardiopulmonary bypass. Laboratory Investigation, 98, 1052–1064.

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by grants from the Applied Basic Research Program of Science and Technology Commission Foundation of Tianjin (15JCQNJC10200 to C.L.) and the Second Hospital of Tianjin Medical University Central Laboratory Research Fund Project (2017ydey17 to C.L.).

Author information

Authors and Affiliations

Authors

Contributions

All of the authors met authorship criteria. XW designed the experiments, built the diabetic rabbit model, carried out the electrophysiological and caspase-1 activity examination and the western blot analysis, and wrote the first draft. YL, DT, XL, SN, and YS performed the epicardial activation mapping, the hemodynamic and histological examination, the echocardiographic examination, and ELISA. TL and GL were involved in design and manuscript modification. CL designed the study and revised the manuscript. The final manuscript was approved by all the authors.

Corresponding author

Correspondence to Changle Liu.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Ethical Approval

All institutional and national guidelines for the care and use of animals were followed and approved by the appropriate institutional committees.

Additional information

Associate Editor Joost Sluijter oversaw the review of this article

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Liu, Y., Tu, D. et al. Role of NLRP3-Inflammasome/Caspase-1/Galectin-3 Pathway on Atrial Remodeling in Diabetic Rabbits. J. of Cardiovasc. Trans. Res. 13, 731–740 (2020). https://doi.org/10.1007/s12265-020-09965-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-020-09965-8

Keywords

Navigation