Skip to main content
Log in

Oxidized HDL, as a Novel Biomarker for Calcific Aortic Valve Disease, Promotes the Calcification of Aortic Valve Interstitial Cells

  • Original Article
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Calcific aortic valve disease (CAVD) is characterized by progressive mineralization of the aortic valve. Lipid infiltration and oxidative stress are the driving forces for the initiation and development of this disease. However, it remains unknown whether oxidized high-density lipoprotein (ox-HDL) plays a role in the mineralization of aortic valve interstitial cells (AVICs). Serum ox-HDL levels were determined in 168 severe CAVD patients and 168 age- and gender-matched non-CAVD controls. Results showed that ox-HDL concentrations were significantly increased in CAVD compared with the control group (131.52 ± 30.96 ng/mL vs. 112.58 ± 32.20 ng/mL, P < 0.001) and were correlated with CAVD severity. Multivariable logistic regression revealed that ox-HDL levels were independently associated with CAVD after adjusting for the incidence of coronary artery disease (CAD) (odds ratio 1.019, 95% CI 1.012–1.027, P < 0.001) or atherosclerotic risk factors (odds ratio 1.027, 95% CI 1.017–1.037, P < 0.001). Chronic ox-HDL stimulation of AVICs increased alkaline phosphatase activity (ALP) and calcium deposits in AVICs in vitro. Mechanistic studies further showed that ox-HDL upregulated several osteogenic factors, including BMP-2, Runx2, and Msx2 expressions in AVICs. This is the first study to demonstrate a relationship between increased ox-HDL concentration and CAVD incidence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Rajamannan, N. M., Evans, F. J., Aikawa, E., Grande-Allen, K. J., Demer, L. L., Heistad, D. D., Simmons, C. A., Masters, K. S., Mathieu, P., O'Brien, K. D., Schoen, F. J., Towler, D. A., Yoganathan, A. P., & Otto, C. M. (2011). Calcific aortic valve disease: not simply a degenerative process: a review and agenda for research from the National Heart and Lung and Blood Institute Aortic Stenosis Working Group. Executive summary: calcific aortic valve disease-2011 update. Circulation, 124, 1783–1791.

    Article  Google Scholar 

  2. Branchetti, E., Sainger, R., Poggio, P., Grau, J. B., Patterson-Fortin, J., Bavaria, J. E., Chorny, M., Lai, E., Gorman, R. C., Levy, R. J., & Ferrari, G. (2013). Antioxidant enzymes reduce DNA damage and early activation of valvular interstitial cells in aortic valve sclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 33, e66–e74.

    Article  CAS  Google Scholar 

  3. Osman, L., Yacoub, M. H., Latif, N., Amrani, M., & Chester, A. H. (2006). Role of human valve interstitial cells in valve calcification and their response to atorvastatin. Circulation, 114, I547–I552.

    PubMed  Google Scholar 

  4. Mathieu, P., & Boulanger, M. C. (2014). Basic mechanisms of calcific aortic valve disease. The Canadian Journal of Cardiology, 30, 982–993.

    Article  Google Scholar 

  5. Bouchareb, R., Boulanger, M. C., Fournier, D., Pibarot, P., Messaddeq, Y., & Mathieu, P. (2014). Mechanical strain induces the production of spheroid mineralized microparticles in the aortic valve through a rhoa/rock-dependent mechanism. Journal of Molecular and Cellular Cardiology, 67, 49–59.

    Article  CAS  Google Scholar 

  6. Rosenson, R. S., Brewer, H. B., Jr., Ansell, B., Barter, P., Chapman, M. J., Heinecke, J. W., Kontush, A., Tall, A. R., & Webb, N. R. (2013). Translation of high-density lipoprotein function into clinical practice: current prospects and future challenges. Circulation, 128, 1256–1267.

    Article  Google Scholar 

  7. Barter, P. J., Nicholls, S., Rye, K. A., Anantharamaiah, G. M., Navab, M., & Fogelman, A. M. (2004). Antiinflammatory properties of hdl. Circulation Research, 95, 764–772.

    Article  CAS  Google Scholar 

  8. von Eckardstein, A., Nofer, J. R., & Assmann, G. (2001). High density lipoproteins and arteriosclerosis. Role of cholesterol efflux and reverse cholesterol transport. Arteriosclerosis, Thrombosis, and Vascular Biology, 21, 13–27.

    Article  Google Scholar 

  9. Parhami, F., Basseri, B., Hwang, J., Tintut, Y., & Demer, L. L. (2002). High-density lipoprotein regulates calcification of vascular cells. Circulation Research, 91, 570–576.

    Article  CAS  Google Scholar 

  10. Audet, A., Cote, N., Couture, C., Bosse, Y., Despres, J. P., Pibarot, P., & Mathieu, P. (2012). Amyloid substance within stenotic aortic valves promotes mineralization. Histopathology, 61, 610–619.

    Article  Google Scholar 

  11. Yao, S., Tian, H., Zhao, L., Li, J., Yang, L., Yue, F., Li, Y., Jiao, P., Yang, N., Wang, Y., Zhang, X., & Qin, S. (2017). Oxidized high density lipoprotein induces macrophage apoptosis via toll-like receptor 4-dependent chop pathway. Journal of Lipid Research, 58, 164–177.

    Article  CAS  Google Scholar 

  12. Wang, Y., Ji, L., Jiang, R., Zheng, L., & Liu, D. (2014). Oxidized high-density lipoprotein induces the proliferation and migration of vascular smooth muscle cells by promoting the production of ros. Journal of Atherosclerosis and Thrombosis, 21, 204–216.

    Article  Google Scholar 

  13. Matsunaga, T., Hokari, S., Koyama, I., Harada, T., & Komoda, T. (2003). Nf-kappa b activation in endothelial cells treated with oxidized high-density lipoprotein. Biochemical and Biophysical Research Communications, 303, 313–319.

    Article  CAS  Google Scholar 

  14. Baumgartner, H., Falk, V., Bax, J. J., De Bonis, M., Hamm, C., Holm, P. J., Iung, B., Lancellotti, P., Lansac, E., Rodriguez Munoz, D., Rosenhek, R., Sjogren, J., Tornos Mas, P., Vahanian, A., Walther, T., Wendler, O., Windecker, S., Zamorano, J. L., & Group ESCSD. (2017). 2017 esc/eacts guidelines for the management of valvular heart disease. European Heart Journal, 38, 2739–2791.

    Article  Google Scholar 

  15. Mack, W. J., Azen, S. P., Dunn, M., & Hodis, H. N. (1997). A comparison of quantitative computerized and human panel coronary endpoint measures: implications for the design of angiographic trials. Controlled Clinical Trials, 18, 168–179.

    Article  CAS  Google Scholar 

  16. Sun, J. T., Yang, K., Lu, L., Zhu, Z. B., Zhu, J. Z., Ni, J. W., Han, H., Chen, N., & Zhang, R. Y. (2016). Increased carbamylation level of hdl in end-stage renal disease: carbamylated-hdl attenuated endothelial cell function. American Journal of Physiology. Renal Physiology, 310, F511–F517.

    Article  CAS  Google Scholar 

  17. Mohler, E. R., 3rd, Chawla, M. K., Chang, A. W., Vyavahare, N., Levy, R. J., Graham, L., & Gannon, F. H. (1999). Identification and characterization of calcifying valve cells from human and canine aortic valves. The Journal of Heart Valve Disease, 8, 254–260.

    PubMed  Google Scholar 

  18. Mathieu, P., Voisine, P., Pepin, A., Shetty, R., Savard, N., & Dagenais, F. (2005). Calcification of human valve interstitial cells is dependent on alkaline phosphatase activity. The Journal of Heart Valve Disease, 14, 353–357.

    PubMed  Google Scholar 

  19. Matsubara, T., Kida, K., Yamaguchi, A., Hata, K., Ichida, F., Meguro, H., Aburatani, H., Nishimura, R., & Yoneda, T. (2008). Bmp2 regulates osterix through msx2 and runx2 during osteoblast differentiation. The Journal of Biological Chemistry, 283, 29119–29125.

    Article  CAS  Google Scholar 

  20. Kaden, J. J., Bickelhaupt, S., Grobholz, R., Haase, K. K., Sarikoc, A., Kilic, R., Brueckmann, M., Lang, S., Zahn, I., Vahl, C., Hagl, S., Dempfle, C. E., & Borggrefe, M. (2004). Receptor activator of nuclear factor kappab ligand and osteoprotegerin regulate aortic valve calcification. Journal of Molecular and Cellular Cardiology, 36, 57–66.

    Article  CAS  Google Scholar 

  21. Small, A., Kiss, D., Giri, J., Anwaruddin, S., Siddiqi, H., Guerraty, M., Chirinos, J. A., Ferrari, G., & Rader, D. J. (2017). Biomarkers of calcific aortic valve disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 37, 623–632.

    Article  CAS  Google Scholar 

  22. Nel, K., Nam, M. C. Y., Anstey, C., Boos, C. J., Carlton, E., Senior, R., Kaski, J. C., Khattab, A., Shamley, D., Byrne, C. D., Stanton, T., & Greaves, K. (2017). Myocardial blood flow reserve is impaired in patients with aortic valve calcification and unobstructed epicardial coronary arteries. International Journal of Cardiology, 248, 427–432.

    Article  Google Scholar 

  23. Mahmut, A., Boulanger, M. C., El Husseini, D., Fournier, D., Bouchareb, R., Despres, J. P., Pibarot, P., Bosse, Y., & Mathieu, P. (2014). Elevated expression of lipoprotein-associated phospholipase a2 in calcific aortic valve disease: Implications for valve mineralization. Journal of the American College of Cardiology, 63, 460–469.

    Article  CAS  Google Scholar 

  24. Rossebo, A. B., Pedersen, T. R., Boman, K., Brudi, P., Chambers, J. B., Egstrup, K., Gerdts, E., Gohlke-Barwolf, C., Holme, I., Kesaniemi, Y. A., Malbecq, W., Nienaber, C. A., Ray, S., Skjaerpe, T., Wachtell, K., Willenheimer, R., & Investigators, S. (2008). Intensive lipid lowering with simvastatin and ezetimibe in aortic stenosis. The New England Journal of Medicine, 359, 1343–1356.

    Article  Google Scholar 

  25. Chan, K. L., Teo, K., Dumesnil, J. G., Ni, A., Tam, J., & Investigators, A. (2010). Effect of lipid lowering with rosuvastatin on progression of aortic stenosis: results of the aortic stenosis progression observation: measuring effects of rosuvastatin (astronomer) trial. Circulation, 121, 306–314.

    Article  CAS  Google Scholar 

  26. Kotani, K., Sakane, N., Ueda, M., Mashiba, S., Hayase, Y., Tsuzaki, K., Yamada, T., & Remaley, A. T. (2012). Oxidized high-density lipoprotein is associated with increased plasma glucose in non-diabetic dyslipidemic subjects. Clinica Chimica Acta, 414, 125–129.

    Article  CAS  Google Scholar 

  27. Mohty, D., Pibarot, P., Despres, J. P., Cote, C., Arsenault, B., Cartier, A., Cosnay, P., Couture, C., & Mathieu, P. (2008). Association between plasma ldl particle size, valvular accumulation of oxidized ldl, and inflammation in patients with aortic stenosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 28, 187–193.

    Article  CAS  Google Scholar 

  28. Sun, J. T., Liu, Y., Lu, L., Liu, H. J., Shen, W. F., Yang, K., & Zhang, R. Y. (2016). Diabetes-invoked high-density lipoprotein and its association with coronary artery disease in patients with type 2 diabetes mellitus. The American Journal of Cardiology, 118, 1674–1679.

    Article  CAS  Google Scholar 

  29. Katz, R., Budoff, M. J., Takasu, J., Shavelle, D. M., Bertoni, A., Blumenthal, R. S., Ouyang, P., Wong, N. D., & O'Brien, K. D. (2009). Relationship of metabolic syndrome with incident aortic valve calcium and aortic valve calcium progression: the multi-ethnic study of atherosclerosis (mesa). Diabetes, 58, 813–819.

    Article  CAS  Google Scholar 

  30. Arsenault, B. J., Dube, M. P., Brodeur, M. R., de Oliveira Moraes, A. B., Lavoie, V., Kernaleguen, A. E., Guauque-Olarte, S., Mathieu, P., Pibarot, P., Messika-Zeitoun, D., Bosse, Y., Rhainds, D., Rheaume, E., & Tardif, J. C. (2014). Evaluation of links between high-density lipoprotein genetics, functionality, and aortic valve stenosis risk in humans. Arteriosclerosis, Thrombosis, and Vascular Biology, 34, 457–462.

    Article  CAS  Google Scholar 

  31. Yang, X., Fullerton, D. A., Su, X., Ao, L., Cleveland, J. C., Jr., & Meng, X. (2009). Pro-osteogenic phenotype of human aortic valve interstitial cells is associated with higher levels of toll-like receptors 2 and 4 and enhanced expression of bone morphogenetic protein 2. Journal of the American College of Cardiology, 53, 491–500.

    Article  CAS  Google Scholar 

  32. Masjedi, S., Amarnath, A., Baily, K. M., & Ferdous, Z. (2016). Comparison of calcification potential of valvular interstitial cells isolated from individual aortic valve cusps. Cardiovascular Pathology, 25, 185–194.

    Article  CAS  Google Scholar 

  33. Jang, W. G., Kim, E. J., Kim, D. K., Ryoo, H. M., Lee, K. B., Kim, S. H., Choi, H. S., & Koh, J. T. (2012). Bmp2 protein regulates osteocalcin expression via runx2-mediated atf6 gene transcription. The Journal of Biological Chemistry, 287, 905–915.

    Article  CAS  Google Scholar 

  34. Tyson, K. L., Reynolds, J. L., McNair, R., Zhang, Q., Weissberg, P. L., & Shanahan, C. M. (2003). Osteo/chondrocytic transcription factors and their target genes exhibit distinct patterns of expression in human arterial calcification. Arteriosclerosis, Thrombosis, and Vascular Biology, 23, 489–494.

    Article  CAS  Google Scholar 

  35. Yung, L. M., Sanchez-Duffhues, G., Ten Dijke, P., & Yu, P. B. (2015). Bone morphogenetic protein 6 and oxidized low-density lipoprotein synergistically recruit osteogenic differentiation in endothelial cells. Cardiovascular Research, 108, 278–287.

    Article  CAS  Google Scholar 

  36. Byon, C. H., Javed, A., Dai, Q., Kappes, J. C., Clemens, T. L., Darley-Usmar, V. M., McDonald, J. M., & Chen, Y. (2008). Oxidative stress induces vascular calcification through modulation of the osteogenic transcription factor runx2 by akt signaling. The Journal of Biological Chemistry, 283, 15319–15327.

    Article  CAS  Google Scholar 

  37. Miki, T., Miyoshi, T., Kotani, K., Kohno, K., Asonuma, H., Sakuragi, S., Koyama, Y., Nakamura, K., & Ito, H. (2019). Decrease in oxidized high-density lipoprotein is associated with slowed progression of coronary artery calcification: subanalysis of a prospective multicenter study. Atherosclerosis, 283, 1–6.

    Article  CAS  Google Scholar 

  38. Rosenson, R. S., Brewer, H. B., Jr., Ansell, B. J., Barter, P., Chapman, M. J., Heinecke, J. W., Kontush, A., Tall, A. R., & Webb, N. R. (2016). Dysfunctional hdl and atherosclerotic cardiovascular disease. Nature Reviews. Cardiology, 13, 48–60.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by grants from the Chinese National Nature Science Foundation (81800223, 81470547 and 81500299), Shanghai Sailing Program (18YF1413500), and Joint Funds for the Innovation of Science and Technology, Fujian Province (2017Y9007).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ke Yang or Yan Liu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Ethical Approval

All study protocols were approved by the Ethical Committee of Shanghai Jiao Tong University School of Medicine. Each participant provided written informed consent before the study commenced.

Additional information

Associate Editor Craig Stolen oversaw the review of this article

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, J.T., Chen, Y.Y., Mao, J.Y. et al. Oxidized HDL, as a Novel Biomarker for Calcific Aortic Valve Disease, Promotes the Calcification of Aortic Valve Interstitial Cells. J. of Cardiovasc. Trans. Res. 12, 560–568 (2019). https://doi.org/10.1007/s12265-019-09903-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-019-09903-3

Keywords

Navigation