Skip to main content

Advertisement

Log in

Exercise Attenuates Acute β-Adrenergic OveractivationInduced Cardiac Fibrosis by Modulating Cytokines

  • Original Article
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

During acute sympathetic stress, the overactivation of β-adrenergic receptors (β-ARs) causes cardiac fibrosis by triggering inflammation and cytokine expression. It is unknown whether exercise training inhibits acute β-AR overactivation–induced cytokine expression and cardiac injury. Here, we report that running exercise inhibited cardiac fibrosis and improved cardiac function in mice treated with isoproterenol (ISO), a β-AR agonist. A cytokine antibody array revealed that running exercise prevented most of the changes in cytokine expression induced by ISO. Specifically, ISO-induced upregulation of 18 cytokines was prevented by running exercise. A Kyoto encyclopedia of genes and genomes analysis of these cytokines revealed that Hedgehog and RAP1 signaling pathways were involved in the regulation of cytokine expression by exercise. The changes in the expression of some cytokines that were prevented by exercise were verified by an enzyme-linked immunosorbent assay and real-time PCR. In conclusion, running exercise prevented the cytokine expression changes after acute β-AR overactivation and therefore attenuated cardiac fibrosis. Acute sympathetic stress is an important risk factor for the patients with cardiovascular diseases, and the present study revealed that exercise training can prevent against the upregulation of cytokines and the subsequent cardiac injury induced by acute sympathetic stress, suggesting that exercise training may be beneficial for cardiovascular patients who are in risk of acute sympathetic stress. This finding provides a theoretical basis for the application of exercise training in patients who may suffer from acute sympathetic stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ELISA:

Enzyme-linked immunosorbent assay

GO:

Gene ontology

IL-1RN:

Interleukin-1 receptor antagonist

ISO:

Isoproterenol

KEGG:

Kyoto encyclopedia of genes and genomes

MMP2:

Matrix metalloprotein 2

MOK:

MAPK/MAK/MRK overlapping kinase

PCA:

Principal component analysis

RAP1:

Ras-related protein 1

Sed:

Sedentary

SPP1:

Osteopontin

TNFRSF1B:

Tumor necrosis factor receptor superfamily member 1B

β-AR:

β-Adrenergic receptor

References

  1. Kivimaki, M., & Steptoe, A. (2018). Effects of stress on the development and progression of cardiovascular disease. Nature Reviews. Cardiology, 15(4), 215–229. https://doi.org/10.1038/nrcardio.2017.189.

    Article  CAS  PubMed  Google Scholar 

  2. Manolis, A. J., Poulimenos, L. E., Kallistratos, M. S., Gavras, I., & Gavras, H. (2014). Sympathetic overactivity in hypertension and cardiovascular disease. Current Vascular Pharmacology, 12(1), 4–15.

    Article  CAS  Google Scholar 

  3. Cao, N., Chen, H., Bai, Y., Yang, X., Xu, W., Hao, W., et al. (2018). Beta2-adrenergic receptor autoantibodies alleviated myocardial damage induced by beta1-adrenergic receptor autoantibodies in heart failure. Cardiovascular Research, 114(11), 1487–1498. https://doi.org/10.1093/cvr/cvy105.

    Article  CAS  PubMed  Google Scholar 

  4. Chida, Y., & Steptoe, A. (2009). The association of anger and hostility with future coronary heart disease: a meta-analytic review of prospective evidence. Journal of the American College of Cardiology, 53(11), 936–946. https://doi.org/10.1016/j.jacc.2008.11.044.

    Article  PubMed  Google Scholar 

  5. Xiao, H., Li, H., Wang, J. J., Zhang, J. S., Shen, J., An, X. B., et al. (2018). IL-18 cleavage triggers cardiac inflammation and fibrosis upon beta-adrenergic insult. European Heart Journal, 39(1), 60–69. https://doi.org/10.1093/eurheartj/ehx261.

    Article  CAS  PubMed  Google Scholar 

  6. Chow, C. K., Redfern, J., Hillis, G. S., Thakkar, J., Santo, K., Hackett, M. L., et al. (2015). Effect of lifestyle-focused text messaging on risk factor modification in patients with coronary heart disease: a randomized clinical trial. JAMA, 314(12), 1255–1263. https://doi.org/10.1001/jama.2015.10945.

    Article  CAS  PubMed  Google Scholar 

  7. Hegde, S. M., & Solomon, S. D. (2015). Influence of physical activity on hypertension and cardiac structure and function. Current Hypertension Reports, 17(10), 77. https://doi.org/10.1007/s11906-015-0588-3.

    Article  PubMed  PubMed Central  Google Scholar 

  8. O'Connor, C. M., Whellan, D. J., Lee, K. L., Keteyian, S. J., Cooper, L. S., Ellis, S. J., et al. (2009). Efficacy and safety of exercise training in patients with chronic heart failure: HF-ACTION randomized controlled trial. JAMA, 301(14), 1439–1450. https://doi.org/10.1001/jama.2009.454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ma, X., Fu, Y., Xiao, H., Song, Y., Chen, R., Shen, J., et al. (2015). Cardiac fibrosis alleviated by exercise training is AMPK-dependent. PLoS One, 10(6), e0129971. https://doi.org/10.1371/journal.pone.0129971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. An, X., Wang, J., Li, H., Lu, Z., Bai, Y., Xiao, H., et al. (2016). Speckle tracking based strain analysis is sensitive for early detection of pathological cardiac hypertrophy. PLoS One, 11(2), e0149155. https://doi.org/10.1371/journal.pone.0149155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Metsalu, T., & Vilo, J. (2015). ClustVis: a web tool for visualizing clustering of multivariate data using principal component analysis and heatmap. Nucleic Acids Research, 43(W1), W566–W570. https://doi.org/10.1093/nar/gkv468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Huang da, W., Sherman, B. T., & Lempicki, R. A. (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protocols, 4(1), 44–57, doi:https://doi.org/10.1038/nprot.2008.211.

    Article  Google Scholar 

  13. Agassandian, M., Tedrow, J. R., Sembrat, J., Kass, D. J., Zhang, Y., Goncharova, E. A., et al. (2015). VCAM-1 is a TGF-beta1 inducible gene upregulated in idiopathic pulmonary fibrosis. Cellular Signalling, 27(12), 2467–2473. https://doi.org/10.1016/j.cellsig.2015.09.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen, L. P., Liu, H., Huang, Y., Zhang, X. Y., Alexander, R. E., & Cheng, L. (2013). Expression of NFkappaB, ICAM1, and VCAM1 in rheumatic heart disease with atrial fibrillation. Anal Quant Cytopathol Histpathol, 35(5), 249–252.

    PubMed  Google Scholar 

  15. Gogiraju, R., Schroeter, M. R., Bochenek, M. L., Hubert, A., Munzel, T., Hasenfuss, G., et al. (2016). Endothelial deletion of protein tyrosine phosphatase-1B protects against pressure overload-induced heart failure in mice. Cardiovascular Research, 111(3), 204–216. https://doi.org/10.1093/cvr/cvw101.

    Article  CAS  PubMed  Google Scholar 

  16. Erdmann, R., Ozden, C., Weidmann, J., & Schultze, A. (2015). Targeting the Gremlin-VEGFR2 axis - a promising strategy for multiple diseases? The Journal of Pathology, 236(4), 403–406. https://doi.org/10.1002/path.4544.

    Article  PubMed  Google Scholar 

  17. Kleinbongard, P., Schulz, R., & Heusch, G. (2011). TNFalpha in myocardial ischemia/reperfusion, remodeling and heart failure. Heart Failure Reviews, 16(1), 49–69. https://doi.org/10.1007/s10741-010-9180-8.

    Article  CAS  PubMed  Google Scholar 

  18. Johnston, C. J., Williams, J. P., Okunieff, P., & Finkelstein, J. N. (2002). Radiation-induced pulmonary fibrosis: examination of chemokine and chemokine receptor families. Radiation Research, 157(3), 256–265.

    Article  CAS  Google Scholar 

  19. Wang, Y., Li, Y., Wu, Y., Jia, L., Wang, J., Xie, B., et al. (2014). 5TNF-alpha and IL-1beta neutralization ameliorates angiotensin II-induced cardiac damage in male mice. Endocrinology, 155(7), 2677–2687. https://doi.org/10.1210/en.2013-2065.

    Article  CAS  PubMed  Google Scholar 

  20. Koh, Y., & Park, J. (2018). Cell adhesion molecules and exercise. Journal of Inflammation Research, 11, 297–306. https://doi.org/10.2147/JIR.S170262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Keller, C., Keller, P., Giralt, M., Hidalgo, J., & Pedersen, B. K. (2004). Exercise normalises overexpression of TNF-alpha in knockout mice. Biochemical and Biophysical Research Communications, 321(1), 179–182. https://doi.org/10.1016/j.bbrc.2004.06.129.

    Article  CAS  PubMed  Google Scholar 

  22. Mardare, C., Kruger, K., Liebisch, G., Seimetz, M., Couturier, A., Ringseis, R., et al. (2016). Endurance and resistance training affect high fat diet-induced increase of ceramides, inflammasome expression, and systemic inflammation in mice. Journal Diabetes Research, 2016, 4536470. https://doi.org/10.1155/2016/4536470.

    Article  CAS  Google Scholar 

  23. Chennaoui, M., Drogou, C., & Gomez-Merino, D. (2008). Effects of physical training on IL-1beta, IL-6 and IL-1ra concentrations in various brain areas of the rat. European Cytokine Network, 19(1), 8–14. https://doi.org/10.1684/ecn.2008.0115.

    Article  CAS  PubMed  Google Scholar 

  24. Boettner, B., & Van Aelst, L. (2009). Control of cell adhesion dynamics by Rap1 signaling. Current Opinion in Cell Biology, 21(5), 684–693. https://doi.org/10.1016/j.ceb.2009.06.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Miller, C. L., Cai, Y., Oikawa, M., Thomas, T., Dostmann, W. R., Zaccolo, M., et al. (2011). Cyclic nucleotide phosphodiesterase 1A: a key regulator of cardiac fibroblast activation and extracellular matrix remodeling in the heart. Basic Research in Cardiology, 106(6), 1023–1039. https://doi.org/10.1007/s00395-011-0228-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang, X., Szeto, C., Gao, E., Tang, M., Jin, J., Fu, Q., et al. (2013). Cardiotoxic and cardioprotective features of chronic beta-adrenergic signaling. Circulation Research, 112(3), 498–509. https://doi.org/10.1161/CIRCRESAHA.112.273896.

    Article  CAS  PubMed  Google Scholar 

  27. Kramann, R. (2016). Hedgehog Gli signalling in kidney fibrosis. Nephrology, Dialysis, Transplantation, 31(12), 1989–1995. https://doi.org/10.1093/ndt/gfw102.

    Article  CAS  PubMed  Google Scholar 

  28. Laughlin, M. H., Padilla, J., Jenkins, N. T., Thorne, P. K., Martin, J. S., Rector, R. S., et al. (2015). Exercise-induced differential changes in gene expression among arterioles of skeletal muscles of obese rats. Journal of Applied Physiology (Bethesda, MD: 1985), 119(6), 583–603. https://doi.org/10.1152/japplphysiol.00316.2015.

    Article  CAS  Google Scholar 

  29. Kovarik, P., Ebner, F., & Sedlyarov, V. (2017). Posttranscriptional regulation of cytokine expression. Cytokine, 89, 21–26. https://doi.org/10.1016/j.cyto.2015.11.007.

    Article  CAS  PubMed  Google Scholar 

  30. Lim, W., Jeong, W., Kim, J., Ka, H., Bazer, F. W., Han, J. Y., et al. (2012). Differential expression of secreted phosphoprotein 1 in response to estradiol-17beta and in ovarian tumors in chickens. Biochemical and Biophysical Research Communications, 422(3), 494–500. https://doi.org/10.1016/j.bbrc.2012.05.026.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Beijing Natural Science Foundation (grant No. 7182176 to Wei Gao), the National Natural Science Foundation of China (grant No. 81670205 to Han Xiao, grant No. 81530009 to Youyi Zhang, and grant No. 81871850 to Haiyi Yu), the Open Foundation from Beijing Key Laboratory of Hypertension Research (grant No. 2017GXY-KFKT-05), and the Fund for Fostering Young Scholars of Peking University Health Science Center (grant No. BMU2017PY016).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Han Xiao or Wei Gao.

Ethics declarations

The animal experiment was approved by the Committee of Peking University on Ethics of Animal Experiments (Approval number: LA 2010–036). The procedures were conducted according to the US National Institutes of Health Guide for the Care and Use of Laboratory Animals (NIH Publication No. 85-23, revised 1996) and the Guidelines for Animal Experiments, Peking University Health Science Center.

Human Subjects/Informed Consent Statement

No experiments on human subjects were carried out.

Ethical Approval of Animal Studies

All institutional and national guidelines for the care and use of laboratory animals were followed and approved by the appropriate institutional committees.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Associate Editor Junjie Xiao oversaw the review of this article

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 17 kb)

ESM 2

(DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alemasi, A., Cao, N., An, X. et al. Exercise Attenuates Acute β-Adrenergic OveractivationInduced Cardiac Fibrosis by Modulating Cytokines. J. of Cardiovasc. Trans. Res. 12, 528–538 (2019). https://doi.org/10.1007/s12265-019-09894-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-019-09894-1

Keywords

Navigation