Skip to main content
Log in

Association of D-dimer with Plaque Characteristics and Plasma Biomarkers of Oxidation-Specific Epitopes in Stable Subjects with Coronary Artery Disease

  • Original Article
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

D-dimer has emerged as a biomarker of cardiovascular event risk, yet pathophysiological factors associated with plasma D-dimer levels in stable coronary artery disease (CAD) subjects are poorly understood. In 106 stable CAD subjects undergoing intravascular ultrasound with virtual histology (IVUS-VH), we measured D-dimer, lipoprotein(a) (Lp(a)), plasminogen, biomarkers reflecting oxidation-specific epitopes (OSE) such as oxidized phospholipids on apolipoprotein B-100 (OxPL-apoB), OxPL on plasminogen (OxPL-PLG), and autoantibodies to phosphorylcholine-BSA [PC-BSA] and a malondialdehyde [MDA] mimotope. In univariate analysis, D-dimer was positively associated with Lp(a), OxPL-apoB, OxPL-PLG, and coronary artery calcium, and inversely associated with autoantibodies to OSE and plaque fibrosis. D-dimer levels > 500 ng/ml also showed positive association with plaque necrosis. After multivariate analysis, D-dimer remained significantly associated with Lp(a) and plaque calcium. While further studies are needed, results provide evidence that plasma D-dimer levels are associated with levels of OxPLs and IVUS-VH indices linked to plaque erosion and rupture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

MDA-LDL:

Malondialdehyde-LDL

PC:

Phosphorylcholine

Lp(a):

Lipoprotein(a)

OxPL-apoB:

Oxidized phospholipids on apoB-100-containing lipoproteins

OxPL-PLG:

Oxidized phospholipids on plasminogen

OSE:

Oxidation-specific epitopes

IVUS-VH:

Intravascular ultrasound-virtual histology

References

  1. Writing Group M, Mozaffarian, D., Benjamin, E. J., Go, A. S., Arnett, D. K., Blaha, M. J., et al. (2016). Heart disease and stroke statistics—2016 update: a report from the American Heart Association. Circulation, 133, e38–360.

    Article  Google Scholar 

  2. Libby, P. (2013). Mechanisms of acute coronary syndromes and their implications for therapy. The New England Journal of Medicine, 368, 2004–2013.

    Article  PubMed  CAS  Google Scholar 

  3. Mann, J., & Davies, M. J. (1999). Mechanisms of progression in native coronary artery disease: role of healed plaque disruption. Heart, 82, 265–268.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Maehara, A., Mintz, G. S., Bui, A. B., Walter, O. R., Castagna, M. T., Canos, D., et al. (2002). Morphologic and angiographic features of coronary plaque rupture detected by intravascular ultrasound. Journal of the American College of Cardiology, 40, 904–910.

    Article  PubMed  Google Scholar 

  5. Rioufol, G., Gilard, M., Finet, G., Ginon, I., Boschat, J., & Andre-Fouet, X. (2004). Evolution of spontaneous atherosclerotic plaque rupture with medical therapy: long-term follow-up with intravascular ultrasound. Circulation, 110, 2875–2880.

    Article  PubMed  Google Scholar 

  6. Davies, M. J. (2000). The pathophysiology of acute coronary syndromes. Heart, 83, 361–366.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Burke, A. P., Kolodgie, F. D., Farb, A., Weber, D. K., Malcom, G. T., Smialek, J., et al. (2001). Healed plaque ruptures and sudden coronary death: evidence that subclinical rupture has a role in plaque progression. Circulation, 103, 934–940.

    Article  PubMed  CAS  Google Scholar 

  8. Naruse, H., Ishii, J., Takahashi, H., Kitagawa, F., Okuyama, R., Kawai, H., et al. (2017). Prognostic value of combination of plasma D-dimer concentration and estimated glomerular filtration rate in predicting long-term mortality of patients with stable coronary artery disease. Circulation Journal, 81, 1506–1513.

    Article  PubMed  Google Scholar 

  9. Gong, P., Yang, S. H., Li, S., Luo, S. H., Zeng, R. X., Zhang, Y., et al. (2016). Plasma D-dimer as a useful marker predicts severity of atherosclerotic lesion and short-term outcome in patients with coronary artery disease. Clinical and Applied Thrombosis/Hemostasis.

  10. Raffield, L. M., Zakai, N. A., Duan, Q., Laurie, C., Smith, J. D., Irvin, M. R., et al. (2017). D-dimer in African Americans: whole genome sequence analysis and relationship to cardiovascular disease risk in the Jackson heart study. Arteriosclerosis, Thrombosis, and Vascular Biology.

  11. Calvert, P. A., Obaid, D. R., O'Sullivan, M., Shapiro, L. M., McNab, D., Densem, C. G., et al. (2011). Association between IVUS findings and adverse outcomes in patients with coronary artery disease: the VIVA (VH-IVUS in vulnerable atherosclerosis) study. JACC. Cardiovascular Imaging, 4, 894–901.

    Article  PubMed  Google Scholar 

  12. Batty, J. A., Subba, S., Luke, P., Gigi, L. W., Sinclair, H., & Kunadian, V. (2016). Intracoronary imaging in the detection of vulnerable plaques. Current Cardiology Reports, 18, 28.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Tsimikas, S. (2017). A test in context: Lipoprotein(a): diagnosis, prognosis, controversies, and emerging therapies. Journal of the American College of Cardiology, 69, 692–711.

    Article  PubMed  CAS  Google Scholar 

  14. Taleb, A., Witztum, J. L., & Tsimikas, S. (2011). Oxidized phospholipids on apoB-100-containing lipoproteins: a biomarker predicting cardiovascular disease and cardiovascular events. Biomarkers in Medicine, 5, 673–694.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Tsimikas, S., Willeit, P., Willeit, J., Santer, P., Mayr, M., Xu, Q., et al. (2012). Oxidation-specific biomarkers, prospective 15-year cardiovascular and stroke outcomes, and net reclassification of cardiovascular events. Journal of the American College of Cardiology, 60, 2218–2229.

    Article  PubMed  CAS  Google Scholar 

  16. Byun, Y. S., Yang, X., Bao, W., DeMicco, D., Laskey, R., Witztum, J. L., et al. (2017). Oxidized phospholipids on apolipoprotein B-100 and recurrent ischemic events following stroke or transient ischemic attack. Journal of the American College of Cardiology, 69, 147–158.

    Article  PubMed  CAS  Google Scholar 

  17. Leibundgut, G., Arai, K., Orsoni, A., Yin, H., Scipione, C., Miller, E. R., et al. (2012). Oxidized phospholipids are present on plasminogen, affect fibrinolysis, and increase following acute myocardial infarction. Journal of the American College of Cardiology, 59, 1426–1437.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. DeFilippis, A. P., Chernyavskiy, I., Amraotkar, A. R., Trainor, P. J., Kothari, S., Ismail, I., et al. (2016). Circulating levels of plasminogen and oxidized phospholipids bound to plasminogen distinguish between atherothrombotic and non-atherothrombotic myocardial infarction. Journal of Thrombosis and Thrombolysis, 42, 61–76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Tsimikas, S., Brilakis, E. S., Lennon, R. J., Miller, E. R., Witztum, J. L., McConnell, J. P., et al. (2007). Relationship of IgG and IgM autoantibodies to oxidized low density lipoprotein with coronary artery disease and cardiovascular events. Journal of Lipid Research, 48, 425–433.

    Article  PubMed  CAS  Google Scholar 

  20. Gigante, B., Leander, K., Vikstrom, M., Baldassarre, D., Veglia, F., Strawbridge, R. J., et al. (2014). Low levels of IgM antibodies against phosphorylcholine are associated with fast carotid intima media thickness progression and cardiovascular risk in men. Atherosclerosis, 236, 394–399.

    Article  PubMed  CAS  Google Scholar 

  21. Gronlund, H., Hallmans, G., Jansson, J. H., Boman, K., Wikstrom, M., de Faire, U., et al. (2009). Low levels of IgM antibodies against phosphorylcholine predict development of acute myocardial infarction in a population-based cohort from northern Sweden. European Journal of Cardiovascular Prevention and Rehabilitation, 16, 382–386.

    Article  PubMed  Google Scholar 

  22. Fiskesund, R., Stegmayr, B., Hallmans, G., Vikstrom, M., Weinehall, L., de Faire, U., et al. (2010). Low levels of antibodies against phosphorylcholine predict development of stroke in a population-based study from northern Sweden. Stroke, 41, 607–612.

    Article  PubMed  CAS  Google Scholar 

  23. Prasad, A., Clopton, P., Ayers, C., Khera, A., de Lemos, J. A., Witztum, J. L., et al. (2017). Relationship of autoantibodies to MDA-LDL and ApoB-immune complexes to sex, ethnicity, subclinical atherosclerosis, and cardiovascular events. Arteriosclerosis, Thrombosis, and Vascular Biology, 37, 1213–1221.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Amir, S., Hartvigsen, K., Gonen, A., Leibundgut, G., Que, X., Jensen-Jarolim, E., et al. (2012). Peptide mimotopes of malondialdehyde epitopes for clinical applications in cardiovascular disease. Journal of Lipid Research, 53, 1316–1326.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Mintz, G. S., Nissen, S. E., Anderson, W. D., Bailey, S. R., Erbel, R., Fitzgerald, P. J., et al. (2001). American College of Cardiology Clinical Expert Consensus Document on standards for acquisition, measurement and reporting of intravascular ultrasound studies (IVUS). A report of the American College of Cardiology Task Force on clinical expert consensus documents. Journal of the American College of Cardiology, 37, 1478–1492.

    Article  PubMed  CAS  Google Scholar 

  26. Nair, A., Kuban, B. D., Tuzcu, E. M., Schoenhagen, P., Nissen, S. E., & Vince, D. G. (2002). Coronary plaque classification with intravascular ultrasound radiofrequency data analysis. Circulation, 106, 2200–2206.

    Article  PubMed  Google Scholar 

  27. Bertoia, M. L., Pai, J. K., Lee, J. H., Taleb, A., Joosten, M. M., Mittleman, M. A., et al. (2013). Oxidation-specific biomarkers and risk of peripheral artery disease. Journal of the American College of Cardiology, 61, 2169–2179.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Byun, Y. S., Lee, J. H., Arsenault, B. J., Yang, X., Bao, W., DeMicco, D., et al. (2015). Relationship of oxidized phospholipids on apolipoprotein B-100 to cardiovascular outcomes in patients treated with intensive versus moderate atorvastatin therapy: the TNT trial. Journal of the American College of Cardiology, 65, 1286–1295.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Bergmark, C., Dewan, A., Orsoni, A., Merki, E., Miller, E. R., Shin, M. J., et al. (2008). A novel function of lipoprotein [a] as a preferential carrier of oxidized phospholipids in human plasma. Journal of Lipid Research, 49, 2230–2239.

    Article  PubMed  CAS  Google Scholar 

  30. Schneider, M., Witztum, J. L., Young, S. G., Ludwig, E. H., Miller, E. R., Tsimikas, S., et al. (2005). High-level lipoprotein [a] expression in transgenic mice: evidence for oxidized phospholipids in lipoprotein [a] but not in low density lipoproteins. Journal of Lipid Research, 46, 769–778.

    Article  PubMed  CAS  Google Scholar 

  31. Tsimikas, S., Lau, H. K., Han, K. R., Shortal, B., Miller, E. R., Segev, A., et al. (2004). Percutaneous coronary intervention results in acute increases in oxidized phospholipids and lipoprotein(a): short-term and long-term immunologic responses to oxidized low-density lipoprotein. Circulation, 109, 3164–3170.

    Article  PubMed  CAS  Google Scholar 

  32. Ravandi, A., Boekholdt, S. M., Mallat, Z., Talmud, P. J., Kastelein, J. J., Wareham, N. J., et al. (2011). Relationship of IgG and IgM autoantibodies and immune complexes to oxidized LDL with markers of oxidation and inflammation and cardiovascular events: results from the EPIC-Norfolk study. Journal of Lipid Research, 52, 1829–1836.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Leibundgut, G., Lee, J. H., Strauss, B. H., Segev, A., & Tsimikas, S. (2016). Acute and long-term effect of percutaneous coronary intervention on serially-measured oxidative, inflammatory, and coagulation biomarkers in patients with stable angina. Journal of Thrombosis and Thrombolysis, 41, 569–580.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Nasu, K., Tsuchikane, E., Katoh, O., Vince, D. G., Virmani, R., Surmely, J. F., et al. (2006). Accuracy of in vivo coronary plaque morphology assessment: a validation study of in vivo virtual histology compared with in vitro histopathology. Journal of the American College of Cardiology, 47, 2405–2412.

    Article  PubMed  Google Scholar 

  35. Righini, M., Van Es, J., Den Exter, P. L., Roy, P. M., Verschuren, F., Ghuysen, A., et al. (2014). Age-adjusted D-dimer cutoff levels to rule out pulmonary embolism: the ADJUST-PE study. JAMA, 311, 1117–1124.

    Article  PubMed  CAS  Google Scholar 

  36. Criqui, M. H., Denenberg, J. O., Ix, J. H., McClelland, R. L., Wassel, C. L., Rifkin, D. E., et al. (2014). Calcium density of coronary artery plaque and risk of incident cardiovascular events. JAMA, 311, 271–278.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Budoff, M. J., Hokanson, J. E., Nasir, K., Shaw, L. J., Kinney, G. L., Chow, D., et al. (2010). Progression of coronary artery calcium predicts all-cause mortality. JACC. Cardiovascular Imaging, 3, 1229–1236.

    Article  PubMed  Google Scholar 

  38. Budoff, M. J., Young, R., Lopez, V. A., Kronmal, R. A., Nasir, K., Blumenthal, R. S., et al. (2013). Progression of coronary calcium and incident coronary heart disease events: MESA (multi-ethnic study of atherosclerosis). Journal of the American College of Cardiology, 61, 1231–1239.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Corban, M. T., Hung, O. Y., Mekonnen, G., Eshtehardi, P., Eapen, D. J., Rasoul-Arzrumly, E., et al. (2016). Elevated levels of serum fibrin and fibrinogen degradation products are independent predictors of larger coronary plaques and greater plaque necrotic Core. Circulation Journal, 80, 931–937.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Hansson, G. K., Libby, P., & Tabas, I. (2015). Inflammation and plaque vulnerability. Journal of Internal Medicine, 278, 483–493.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Stefanadis C, Antoniou CK, Tsiachris D, Pietri P (2017) Coronary atherosclerotic vulnerable plaque: current perspectives. Journal of American Heart Association, 6.

  42. Ketelhuth, D. F., & Back, M. (2011). The role of matrix metalloproteinases in atherothrombosis. Current Atherosclerosis Reports, 13, 162–169.

    Article  PubMed  CAS  Google Scholar 

  43. Michel, J. B., Delbosc, S., Ho-Tin-Noe, B., Leseche, G., Nicoletti, A., Meilhac, O., et al. (2012). From intraplaque haemorrhages to plaque vulnerability: biological consequences of intraplaque haemorrhages. Journal of Cardiovascular Medicine (Hagerstown, Md.), 13, 628–634.

    Article  CAS  Google Scholar 

  44. Hileman, C. O., Longenecker, C. T., Carman, T. L., Milne, G. L., Labbato, D. E., Storer, N. J., et al. (2012). Elevated D-dimer is independently associated with endothelial dysfunction: a cross-sectional study in HIV-infected adults on antiretroviral therapy. Antiviral Therapy, 17, 1345–1349.

    Article  PubMed  CAS  Google Scholar 

  45. Cimmino, G., D'Amico, C., Vaccaro, V., D'Anna, M., & Golino, P. (2011). The missing link between atherosclerosis, inflammation and thrombosis: is it tissue factor? Expert Review of Cardiovascular Therapy, 9, 517–523.

    Article  PubMed  Google Scholar 

  46. Owens 3rd, A. P., Byrnes, J. R., & Mackman, N. (2014). Hyperlipidemia, tissue factor, coagulation, and simvastatin. Trends in Cardiovascular Medicine, 24, 95–98.

    Article  PubMed  CAS  Google Scholar 

  47. Ravandi, A., Leibundgut, G., Hung, M. Y., Patel, M., Hutchins, P. M., Murphy, R. C., et al. (2014). Release and capture of bioactive oxidized phospholipids and oxidized cholesteryl esters during percutaneous coronary and peripheral arterial interventions in humans. Journal of the American College of Cardiology, 63, 1961–1971.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Spence, J. D., & Koschinsky, M. (2012). Mechanisms of lipoprotein(a) pathogenicity: prothrombotic, proatherosclerotic, or both? Arteriosclerosis, Thrombosis, and Vascular Biology, 32, 1550–1551.

    Article  PubMed  CAS  Google Scholar 

  49. Boffa, M. B., & Koschinsky, M. L. (2016). Lipoprotein (a): truly a direct prothrombotic factor in cardiovascular disease? Journal of Lipid Research, 57, 745–757.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Hoover-Plow, J. (2006). Elusive proatherothrombotic role of Lp(a): a new direction? Journal of Thrombosis and Haemostasis, 4, 971–972.

    Article  PubMed  CAS  Google Scholar 

  51. Undas, A., Stepien, E., Tracz, W., & Szczeklik, A. (2006). Lipoprotein(a) as a modifier of fibrin clot permeability and susceptibility to lysis. Journal of Thrombosis and Haemostasis, 4, 973–975.

    Article  PubMed  CAS  Google Scholar 

  52. van Dijk, R. A., Kolodgie, F., Ravandi, A., Leibundgut, G., Hu, P. P., Prasad, A., et al. (2012). Differential expression of oxidation-specific epitopes and apolipoprotein(a) in progressing and ruptured human coronary and carotid atherosclerotic lesions. Journal of Lipid Research, 53, 2773–2790.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. van der Valk, F. M., Bekkering, S., Kroon, J., Yeang, C., Van den Bossche, J., van Buul, J. D., et al. (2016). Oxidized phospholipids on lipoprotein(a) elicit Arterial Wall inflammation and an inflammatory monocyte response in humans. Circulation, 134, 611–624.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Srikakulapu, P., & McNamara, C. A. (2017). B cells and atherosclerosis. American Journal of Physiology. Heart and Circulatory Physiology, 312, H1060–H10H7.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Chou, M. Y., Fogelstrand, L., Hartvigsen, K., Hansen, L. F., Woelkers, D., Shaw, P. X., et al. (2009). Oxidation-specific epitopes are dominant targets of innate natural antibodies in mice and humans. The Journal of Clinical Investigation, 119, 1335–1349.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Kyaw, T., Tay, C., Krishnamurthi, S., Kanellakis, P., Agrotis, A., Tipping, P., et al. (2011). B1a B lymphocytes are atheroprotective by secreting natural IgM that increases IgM deposits and reduces necrotic cores in atherosclerotic lesions. Circulation Research, 109, 830–840.

    Article  PubMed  CAS  Google Scholar 

  57. Lewis, M. J., Malik, T. H., Ehrenstein, M. R., Boyle, J. J., Botto, M., & Haskard, D. O. (2009). Immunoglobulin M is required for protection against atherosclerosis in low-density lipoprotein receptor-deficient mice. Circulation, 120, 417–426.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Doran, A. C., Lipinski, M. J., Oldham, S. N., Garmey, J. C., Campbell, K. A., Skaflen, M. D., et al. (2012). B-cell aortic homing and atheroprotection depend on Id3. Circulation Research, 110, e1–12.

    Article  PubMed  CAS  Google Scholar 

  59. Perry, H. M., Oldham, S. N., Fahl, S. P., Que, X., Gonen, A., Harmon, D. B., et al. (2013). Helix-Loop-Helix factor inhibitor of differentiation 3 regulates interleukin-5 expression and B-1a B cell proliferation. Arteriosclerosis, Thrombosis, and Vascular Biology, 33, 2771–2779.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Tsiantoulas, D., Perkmann, T., Afonyushkin, T., Mangold, A., Prohaska, T. A., Papac-Milicevic, N., et al. (2015). Circulating microparticles carry oxidation-specific epitopes and are recognized by natural IgM antibodies. Journal of Lipid Research, 56, 440–448.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Kataoka, Y., Puri, R., & Nicholls, S. J. (2015). Inflammation, plaque progression and vulnerability: evidence from intravascular ultrasound imaging. Cardiovasc Diagn Ther, 5, 280–289.

    PubMed  PubMed Central  Google Scholar 

  62. Hassan, M. (2015). STABILITY and SOLID-TIMI 52: Lipoprotein associated phospholipase A2 (Lp-PLA2) as a biomarker or risk factor for cardiovascular diseases. Glob Cardiol Sci Pract., 2015, 6.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Maiolino, G., Bisogni, V., Rossitto, G., & Rossi, G. P. (2015). Lipoprotein-associated phospholipase A2 prognostic role in atherosclerotic complications. World Journal of Cardiology, 7, 609–620.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Kolodgie, F. D., Burke, A. P., Skorija, K. S., Ladich, E., Kutys, R., Makuria, A. T., et al. (2006). Lipoprotein-associated phospholipase A2 protein expression in the natural progression of human coronary atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 26, 2523–2529.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Chantel McSkimming, James Garmey, Melissa Marshall for technical assistance, and Frances Gilbert for coordinating human studies and sample acquisition.

Sources of Funding

This work was supported by National Institutes of Health R01-HL-136098 (CAM) and American Heart Association National Scientist Development Grant 13SDG16970030 (HK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hema Kothari.

Ethics declarations

Conflict of Interest

ST is co-inventor of and receives royalties from patents or patent applications owned by the University of California San Diego on oxidation-specific antibodies.

Ethical Approval

All protocols and procedures were approved by the Institutional Review Board for human subjects at UVA and performed in accordance with the Declaration of Helsinki.

Informed Consent

Informed written consent was obtained for all patients prior to enrollment in the study.

Additional information

Associate Editor Craig Stolen oversaw the review of this article

Clinical Relevance

The present study demonstrating positive association of elevated D-dimer with plaque necrosis and calcification and plasma levels of Lp(a) provides potential pathophysiological insights into the association of D-dimer with cardiovascular events. Demonstration of an inverse association of D-dimer with IgM to oxidation-specific epitopes suggests potential pathways of protection from atherothrombosis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kothari, H., Nguyen, A.T., Yang, X. et al. Association of D-dimer with Plaque Characteristics and Plasma Biomarkers of Oxidation-Specific Epitopes in Stable Subjects with Coronary Artery Disease. J. of Cardiovasc. Trans. Res. 11, 221–229 (2018). https://doi.org/10.1007/s12265-018-9790-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-018-9790-4

Keywords

Navigation