Skip to main content

Advertisement

Log in

Serum miR-92a-3p as a New Potential Biomarker for Diagnosis of Kawasaki Disease with Coronary Artery Lesions

  • Original Article
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Recent studies have suggested that serum microRNAs (miRNAs) are novel biomarkers for many cardiovascular diseases, but their role in Kawasaki disease (KD) is still unclear. We demonstrated that serum miR-92a-3p levels were significantly higher in children with KD compared with children with fever and controls (both P < 0.05). When the disease recovered, miR-92a-3p levels returned to those of controls. Clinical and pathological data showed that high levels of miR-92a-3p were significantly associated with coronary artery lesions (CALs). Analysis of the receiver operating characteristic (ROC) curve showed that serum miR-92a-3p had a sensitivity of 81.8% and a specificity of 66.7% for distinguishing KD with CALs from KD without CALs. The area under the curve was 0.816 (P < 0.05, 95% CI 0.669–0.962). Therefore, the miRNA miR-92a-3p may be used as a potential biomarker for diagnosis of KD and KD with coronary artery lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AUC:

Area under the curve

CALs:

Coronary artery lesions

CRP:

C-reactive protein

ESR:

Erythrocyte sedimentation rate

FGF:

Fibroblast growth factor

HUVECs:

Human umbilical vein endothelial cells

KD:

Kawasaki disease

miRNAs:

MicroRNAs

NT-proBNP:

N-terminal pro natriuretic peptide type B

RT-PCR:

Real-time reverse transcription-PCR

WBC:

White blood cell

ROC:

Receiver operating characteristic

References

  1. Kawasaki, T., Kosaki, F., Okawa, S., Shigematsu, I., & Yanagawa, H. (1974). A new infantile acute febrile mucocutaneous lymph node syndrome (MLNS) prevailing in Japan. Pediatrics, 54, 271–276.

    CAS  PubMed  Google Scholar 

  2. Cheung, Y. F. (2014). Vascular health late after Kawasaki disease: implications for accelerated atherosclerosis. Korean Journal of Pediatrics, 57, 472–478.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bartel, D. P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116, 281–297.

    Article  CAS  PubMed  Google Scholar 

  4. Lagos-Quintana, M., Rauhut, R., Lendeckel, W., & Tuschl, T. (2001). Identification of novel genes coding for small expressed RNAs. Science, 294, 853–858.

    Article  CAS  PubMed  Google Scholar 

  5. Calin, G. A., Sevignani, C., Dumitru, C. D., Hyslop, T., Noch, E., Yendamuri, S., Shimizu, M., Rattan, S., Bullrich, F., Negrini, M., & Croce, C. M. (2004). Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proceedings of the National Academy of Sciences of the United States of America, 101, 2999–3004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lewis, B. P., Burge, C. B., & Bartel, D. P. (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 120, 15–20.

    Article  CAS  PubMed  Google Scholar 

  7. Yun, K. W., Lee, J. Y., Yun, S. W., Lim, I. S., & Choi, E. S. (2014). Elevated serum level of microRNA (miRNA)-200c and miRNA-371-5p in children with Kawasaki disease. Pediatric Cardiology, 35, 745–752.

    Article  PubMed  Google Scholar 

  8. Rowley, A. H., Pink, A. J., Reindel, R., Innocentini, N., Baker, S. C., Shulman, S. T., & Kim, K. Y. (2014). A study of cardiovascular miRNA biomarkers for Kawasaki disease. Pediatric Infectious Disease Journal, 33, 1296–1299.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Shimizu, C., Kim, J., Stepanowsky, P., Trinh, C., Lau, H. D., Akers, J. C., Chen, C., Kanegaye, J. T., Tremoulet, A., Ohno-Machado, L., & Burns, J. C. (2013). Differential expression of miR-145 in children with Kawasaki disease. PLoS One, 8, e58159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ni, F. F., Li, C. R., Li, Q., Xia, Y., Wang, G. B., & Yang, J. (2014). Regulatory T cell microRNA expression changes in children with acute Kawasaki disease. Clinical and Experimental Immunology, 178, 384–393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Newburger, J. W., Takahashi, M., Gerber, M. A., Gewitz, M. H., Tani, L. Y., Burns, J. C., Shulman, S. T., Bolger, A. F., Ferrieri, P., Baltimore, R. S., et al. (2004). Diagnosis, treatment, and long-term management of Kawasaki disease: a statement for health professionals from the Committee on Rheumatic Fever, Endocarditis, and Kawasaki Disease, Council on Cardiovascular Disease in the Young, American Heart Association. Pediatrics, 114, 1708–1733.

    Article  PubMed  Google Scholar 

  12. Liao, Y. C., Wang, Y. S., Guo, Y. C., Lin, W. L., Chang, M. H., & Juo, S. H. (2014). Let-7g improves multiple endothelial functions through targeting transforming growth factor-beta and SIRT-1 signaling. Journal of the American College of Cardiology, 63, 1685–1694.

    Article  CAS  PubMed  Google Scholar 

  13. Bao, M. H., Feng, X., Zhang, Y. W., Lou, X. Y., Cheng, Y., & Zhou, H. H. (2013). Let-7 in cardiovascular diseases, heart development and cardiovascular differentiation from stem cells. International Journal of Molecular Sciences, 14, 23086–23102.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Tung, Y. T., Huang, P. W., Chou, Y. C., Lai, C. W., Wang, H. P., Ho, H. C., Yen, C. C., Tu, C. Y., Tsai, T. C., Yeh, D. C., et al. (2015). Lung tumorigenesis induced by human vascular endothelial growth factor (hVEGF)-A165 overexpression in transgenic mice and amelioration of tumor formation by miR-16. Oncotarget, 6, 10222–10238.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Song, D. W., Ryu, J. Y., Kim, J. O., Kwon, E. J., & Kim do, H. (2014). The miR-19a/b family positively regulates cardiomyocyte hypertrophy by targeting atrogin-1 and MuRF-1. The Biochemical Journal, 457, 151–162.

    Article  CAS  PubMed  Google Scholar 

  16. Xue, Y., Wei, Z., Ding, H., Wang, Q., Zhou, Z., Zheng, S., Zhang, Y., Hou, D., Liu, Y., Zen, K., et al. (2015). MicroRNA-19b/221/222 induces endothelial cell dysfunction via suppression of PGC-1alpha in the progression of atherosclerosis. Atherosclerosis, 241, 671–681.

    Article  CAS  PubMed  Google Scholar 

  17. Jia, C., Xiong, M., Wang, P., Cui, J., Du, X., Yang, Q., Wang, W., Chen, Y., & Zhang, T. (2014). Notoginsenoside R1 attenuates atherosclerotic lesions in ApoE deficient mouse model. PLoS One, 9, e99849.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Pin, A. L., Houle, F., Guillonneau, M., Paquet, E. R., Simard, M. J., & Huot, J. (2012). miR-20a represses endothelial cell migration by targeting MKK3 and inhibiting p38 MAP kinase activation in response to VEGF. Angiogenesis, 15, 593–608.

    Article  CAS  PubMed  Google Scholar 

  19. Chen, C. F., Huang, J., Li, H., Zhang, C., Huang, X., Tong, G., & Xu, Y. Z. (2015). MicroRNA-221 regulates endothelial nitric oxide production and inflammatory response by targeting adiponectin receptor 1. Gene, 565, 246–251.

    Article  CAS  PubMed  Google Scholar 

  20. Yu S, Hong Q, Wang Y, Hou K, Wang L, Zhang Y, Fu B, Zhou Y, Zheng W, Chen X, Wu D: High concentrations of uric acid inhibit angiogenesis via regulation of the Krüppel-like factor 2-vascular endothelial growth factor-A axis by miR-92a. Circ J, 2015.

  21. Wu, W., Xiao, H., Laguna-Fernandez, A., Villarreal, G., Jr., Wang, K. C., Geary, G. G., Zhang, Y., Wang, W. C., Huang, H. D., Zhou, J., et al. (2011). Flow-dependent regulation of Krüppel-like factor 2 is mediated by microRNA-92a. Circulation, 124, 633–641.

    Article  CAS  PubMed  Google Scholar 

  22. Zhao, L. L., Wang, Y. B., & Suo, L. (2011). Meta-analysis of the risk factors for coronary artery lesion secondary to Kawasaki disease in Chinese children. Zhonghua Er Ke Za Zhi, 49, 459–467.

    PubMed  Google Scholar 

  23. Nakano, H., Ueda, K., Saito, A., Tsuchitani, Y., Kawamori, J., Miyake, T., & Yoshida, T. (1986). Scoring method for identifying patients with Kawasaki disease at high risk of coronary artery aneurysms. American Journal of Cardiology, 58, 739–742.

    Article  CAS  PubMed  Google Scholar 

  24. Kaneko, K., Yoshimura, K., Ohashi, A., Kimata, T., Shimo, T., & Tsuji, S. (2011). Prediction of the risk of coronary arterial lesions in Kawasaki disease by brain natriuretic peptide. Pediatric Cardiology, 32, 1106–1109.

    Article  PubMed  Google Scholar 

  25. Masi, L., Franceschelli, F., Leoncini, G., Gozzini, A., Rigante, D., La Torre, F., Matucci-Cerinic, M., Brandi, M. L., & Falcini, F. (2013). Can fibroblast growth factor (FGF)-23 circulating levels suggest coronary artery abnormalities in children with Kawasaki disease? Clinical and Experimental Rheumatology, 31, 149–153.

    PubMed  Google Scholar 

  26. Hartopo, A. B., & Setianto, B. Y. (2013). Coronary artery sequel of Kawasaki disease in adulthood, a concern for internists and cardiologists. Acta Medica Indonesiana, 45, 69–75.

    PubMed  Google Scholar 

  27. Honardoost, M. A., Kiani-Esfahani, A., Ghaedi, K., Etemadifar, M., & Salehi, M. (2014). miR-326 and miR-26a, two potential markers for diagnosis of relapse and remission phases in patient with relapsing-remitting multiple sclerosis. Gene, 544, 128–133.

    Article  CAS  PubMed  Google Scholar 

  28. Ries, J., Vairaktaris, E., Agaimy, A., Kintopp, R., Baran, C., Neukam, F. W., & Nkenke, E. (2014). miR-186, miR-3651 and miR-494: potential biomarkers for oral squamous cell carcinoma extracted from whole blood. Oncology Reports, 31, 1429–1436.

    CAS  PubMed  Google Scholar 

  29. Aguado-Fraile, E., Ramos, E., Conde, E., Rodriguez, M., Martin-Gomez, L., Lietor, A., Candela, A., Ponte, B., Liano, F., & Garcia-Bermejo, M. L. (2015). A pilot study identifying a set of microRNAs as precise diagnostic biomarkers of acute kidney injury. PLoS One, 10, e0127175.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Tan, Y., Pan, T., Ye, Y., Ge, G., Chen, L., Wen, D., & Zou, S. (2014). Serum microRNAs as potential biomarkers of primary biliary cirrhosis. PLoS One, 9, e111424.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ren, J., Zhang, J., Xu, N., Han, G., Geng, Q., Song, J., Li, S., Zhao, J., & Chen, H. (2013). Signature of circulating microRNAs as potential biomarkers in vulnerable coronary artery disease. PLoS One, 8, e80738.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Rippe, C., Blimline, M., Magerko, K. A., Lawson, B. R., LaRocca, T. J., Donato, A. J., & Seals, D. R. (2012). MicroRNA changes in human arterial endothelial cells with senescence: relation to apoptosis, eNOS and inflammation. Experimental Gerontology, 47, 45–51.

    Article  CAS  PubMed  Google Scholar 

  33. Loyer, X., Potteaux, S., Vion, A. C., Guerin, C. L., Boulkroun, S., Rautou, P. E., Ramkhelawon, B., Esposito, B., Dalloz, M., Paul, J. L., et al. (2014). Inhibition of microRNA-92a prevents endothelial dysfunction and atherosclerosis in mice. Circulation Research, 114, 434–443.

    Article  CAS  PubMed  Google Scholar 

  34. Niculescu, L. S., Simionescu, N., Sanda, G. M., Carnuta, M. G., Stancu, C. S., Popescu, A. C., Popescu, M. R., Vlad, A., Dimulescu, D. R., Simionescu, M., & Sima, A. V. (2015). MiR-486 and miR-92a identified in circulating HDL discriminate between stable and vulnerable coronary artery disease patients. PLoS One, 10, e0140958.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Vickers, K. C., Palmisano, B. T., Shoucri, B. M., Shamburek, R. D., & Remaley, A. T. (2011). MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nature Cell Biology, 13, 423–433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yim, D., Curtis, N., Cheung, M., & Burgner, D. (2013). Update on Kawasaki disease: epidemiology, aetiology and pathogenesis. Journal of Paediatrics and Child Health, 49, 704–708.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The technical assistance of Jingjing Zeng is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rongzhou Wu or Maoping Chu.

Ethics declarations

All procedures followed were in accordance with the ethical standards of the Second Affiliated Hospital & Yuying Children’s Hospital of Wenzhou Medical Ethics Committee. Informed consent was obtained from all patients for being included in the study.

Funding

This work was supported by the Zhejiang Provincial Natural Science Foundation of China (LY12H02003, LQ15H020006), the Zhejiang Provincial Medical and Health Science and Technology Plan (2012ZDA035), the Science and Technology Department of Zhejiang Province (2015C33163), and the Scientific Research Foundation of Wenzhou (Y20140051).

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

This article does not contain any studies with animals performed by any of the authors.

Additional information

Xing Rong and Lianhong Jia contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rong, X., Jia, L., Hong, L. et al. Serum miR-92a-3p as a New Potential Biomarker for Diagnosis of Kawasaki Disease with Coronary Artery Lesions. J. of Cardiovasc. Trans. Res. 10, 1–8 (2017). https://doi.org/10.1007/s12265-016-9717-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-016-9717-x

Keywords

Navigation