Skip to main content
Log in

Enhancing the Predictive Power of Mutations in the C-Terminus of the KCNQ1-Encoded Kv7.1 Voltage-Gated Potassium Channel

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Despite the overrepresentation of Kv7.1 mutations among patients with a robust diagnosis of long QT syndrome (LQTS), a background rate of innocuous Kv7.1 missense variants observed in healthy controls creates ambiguity in the interpretation of LQTS genetic test results. A recent study showed that the probability of pathogenicity for rare missense mutations depends in part on the topological location of the variant in Kv7.1’s various structure-function domains. Since the Kv7.1’s C-terminus accounts for nearly 50 % of the overall protein and nearly 50 % of the overall background rate of rare variants falls within the C-terminus, further enhancement in mutation calling may provide guidance in distinguishing pathogenic long QT syndrome type 1 (LQT1)-causing mutations from rare non-disease-causing variants in the Kv7.1’s C-terminus. Therefore, we have used conservation analysis and a large case-control study to generate topology-based estimative predictive values to aid in interpretation, identifying three regions of high conservation within the Kv7.1’s C-terminus which have a high probability of LQT1 pathogenicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wang, Q., Curran, M. E., Splawski, I., Burn, T. C., Millholland, J. M., VanRaay, T. J., Shen, J., Timothy, K. W., Vincent, G. M., de Jager, T., Schwartz, P. J., Toubin, J. A., Moss, A. J., Atkinson, D. L., Landes, G. M., Connors, T. D., & Keating, M. T. (1996). Positional cloning of a novel potassium channel gene: KVLQT1 mutations cause cardiac arrhythmias. Nature Genetics, 12(1), 17–23.

    Article  PubMed  Google Scholar 

  2. Perrin, M. J., & Gollob, M. H. (2013). Genetics of cardiac electrical disease. The Canadian Journal of Cardiology, 29(1), 89–99. doi:10.1016/j.cjca.2012.07.847.

    Article  PubMed  Google Scholar 

  3. Ackerman, M. J. (2004). Cardiac channelopathies: it’s in the genes. Nature Medicine, 10(5), 463–464. doi:10.1038/nm0504-463.

    Article  CAS  PubMed  Google Scholar 

  4. Kapa, S., Tester, D. J., Salisbury, B. A., Harris-Kerr, C., Pungliya, M. S., Alders, M., Wilde, A. A., & Ackerman, M. J. (2009). Genetic testing for long-QT syndrome: distinguishing pathogenic mutations from benign variants. Circulation, 120(18), 1752–1760.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Green, R. C., Berg, J. S., Grody, W. W., Kalia, S. S., Korf, B. R., Martin, C. L., McGuire, A. L., Nussbaum, R. L., O’Daniel, J. M., Ormond, K. E., Rehm, H. L., Watson, M. S., Williams, M. S., & Biesecker, L. G. (2013). ACMG recommendations for reporting of incidental findings in clinical exome and genome sequencing. Genetics in Medicine: Official Journal of the American College of Medical Genetics, 15(7), 565–574. doi:10.1038/gim.2013.73.

    Article  CAS  Google Scholar 

  6. Giudicessi, J. R., Kapplinger, J. D., Tester, D. J., Alders, M., Salisbury, B. A., Wilde, A. A. M., & Ackerman, M. J. (2012). Phylogenetic and physicochemical analyses enhance the classification of rare nonsynonymous single nucleotide variants in type 1 and 2 long-QT syndrome. Circulation-Cardiovascular Genetics, 5(5), 519–528.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Abecasis, G. R., Auton, A., Brooks, L. D., DePristo, M. A., Durbin, R. M., Handsaker, R. E., Kang, H. M., Marth, G. T., & McVean, G. A. (2012). An integrated map of genetic variation from 1,092 human genomes. Nature, 491(7422), 56–65. doi:10.1038/nature11632.

    Article  PubMed  Google Scholar 

  8. Wiener, R., Haitin, Y., Shamgar, L., Fernandez-Alonso, M. C., Martos, A., Chomsky-Hecht, O., Rivas, G., Attali, B., & Hirsch, J. A. (2008). The KCNQ1 (Kv7.1) COOH terminus, a multitiered scaffold for subunit assembly and protein interaction. Journal of Biological Chemistry, 283(9), 5815–5830. doi:10.1074/jbc.M707541200.

    Article  CAS  PubMed  Google Scholar 

  9. Tester, D. J., Will, M. L., Haglund, C. M., & Ackerman, M. J. (2005). Compendium of cardiac channel mutations in 541 consecutive unrelated patients referred for long QT syndrome genetic testing. Heart Rhythm, 2(5), 507–517.

    Article  PubMed  Google Scholar 

  10. Kapplinger, J. D., Tester, D. J., Salisbury, B. A., Carr, J. L., Harris-Kerr, C., Pollevick, G. D., Wilde, A. A., & Ackerman, M. J. (2009). Spectrum and prevalence of mutations from the first 2,500 consecutive unrelated patients referred for the FAMILION long QT syndrome genetic test. Heart Rhythm, 6(9), 1297–1303.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Refsgaard, L., Holst, A. G., Sadjadieh, G., Haunso, S., Nielsen, J. B., & Olesen, M. S. (2012). High prevalence of genetic variants previously associated with LQT syndrome in new exome data. European Journal of Human Genetics: EJHG, 20(8), 905–908. doi:10.1038/ejhg.2012.23.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Giudicessi, J. R., & Ackerman, M. J. (2013). Genotype- and phenotype-guided management of congenital long QT syndrome. Current Problems in Cardiology, 38(10), 417–455. doi:10.1016/j.cpcardiol.2013.08.001.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Ware, J. S., Walsh, R., Cunningham, F., Birney, E., & Cook, S. A. (2012). Paralogous annotation of disease-causing variants in long QT syndrome genes. Human Mutation, 33(8), 1188–1191. doi:10.1002/humu.22114.

    Article  CAS  PubMed  Google Scholar 

  14. Zheng, R., Thompson, K., Obeng-Gyimah, E., Alessi, D., Chen, J., Cheng, H., & McDonald, T. V. (2010). Analysis of the interactions between the C-terminal cytoplasmic domains of KCNQ1 and KCNE1 channel subunits. Biochemical Journal, 428(1), 75–84. doi:10.1042/BJ20090977.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Schmitt, N., Calloe, K., Nielsen, N. H., Buschmann, M., Speckmann, E. J., Schulze-Bahr, E., & Schwarz, M. (2007). The novel C-terminal KCNQ1 mutation M520R alters protein trafficking. Biochemical and Biophysical Research Communications, 358(1), 304–310. doi:10.1016/j.bbrc.2007.04.127.

    Article  CAS  PubMed  Google Scholar 

  16. Sato, A., Arimura, T., Makita, N., Ishikawa, T., Aizawa, Y., Ushinohama, H., & Kimura, A. (2009). Novel mechanisms of trafficking defect caused by KCNQ1 mutations found in long QT syndrome. Journal of Biological Chemistry, 284(50), 35122–35133. doi:10.1074/jbc.M109.017293.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Wedekind, H., Schwarz, M., Hauenschild, S., Djonlagic, H., Haverkamp, W., Breithardt, G., Wulfing, T., Pongs, O., Isbrandt, D., & Schulze-Bahr, E. (2004). Effective long-term control of cardiac events with beta-blockers in a family with a common LQT1 mutation. Clinical Genetics, 65(3), 233–241.

    Article  CAS  PubMed  Google Scholar 

  18. Kapplinger, J. D., Landstrom, A. P., Bos, J. M., Salisbury, B. A., Callis, T. E., & Ackerman, M. J. (2014). Distinguishing hypertrophic cardiomyopathy-associated mutations from background genetic noise. Journal of Cardiovascular Translational Research, 7(3), 347–361. doi:10.1007/s12265-014-9542-z.

    Article  PubMed  Google Scholar 

  19. Ruklisa, D., Ware, J. S., Walsh, R., Balding, D. J., & Cook, S. A. (2015). Bayesian models for syndrome- and gene-specific probabilities of novel variant pathogenicity. Genome Medicine, 7(1), 5. doi:10.1186/s13073-014-0120-4.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

J.D.K. is supported by the NIH grant GM72474-08 and thanks the Mayo Clinic MSTP for fostering an outstanding environment for physician-scientist training. This project was supported by the Mayo Clinic Windland Smith Rice Comprehensive Sudden Cardiac Death Program (M.J.A.). We acknowledge the support from the Netherlands CardioVascular Research Initiative (CVON-PREDICT project): the Dutch Heart Foundation, Dutch Federation of University Medical Centres, the Netherlands Organisation for Health Research and Development, and the Royal Netherlands Academy of Sciences (A.A.M.W.).

Disclosures

T.E.C. is an employee of Transgenomic Inc. B.A.S. is an employee of Knome, Inc. M.J.A. is a consultant for Boston Scientific, Gilead Sciences, Medtronic, St. Jude Medical, Inc., and Transgenomic. Intellectual property derived from M.J.A.’s research program resulted in license agreements in 2004 between Mayo Clinic Ventures (formerly Mayo Medical Ventures) and Genaissance Pharmaceuticals (now Transgenomic) with respect to their FAMILION-LQTS and FAMILION-CPVT genetic tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Ackerman.

Additional information

Associate Editor Paul J. R. Barton oversaw the review of this article.

Jamie D. Kapplinger and Andrew S. Tseng contributed equally to this work.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 34 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kapplinger, J.D., Tseng, A.S., Salisbury, B.A. et al. Enhancing the Predictive Power of Mutations in the C-Terminus of the KCNQ1-Encoded Kv7.1 Voltage-Gated Potassium Channel. J. of Cardiovasc. Trans. Res. 8, 187–197 (2015). https://doi.org/10.1007/s12265-015-9622-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-015-9622-8

Keywords

Navigation