Skip to main content

Advertisement

Log in

Stem Cell-Based Cardiac Tissue Engineering

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Cardiovascular diseases are the leading cause of death worldwide, and cell-based therapies represent a potential cure for patients with cardiac diseases such as myocardial infarction, heart failure, and congenital heart diseases. Towards this goal, cardiac tissue engineering is now being investigated as an approach to support cell-based therapies and enhance their efficacy. This review focuses on the latest research in cardiac tissue engineering based on the use of embryonic, induced pluripotent, or adult stem cells. We describe different strategies such as direct injection of cells and/or biomaterials as well as direct replacement therapies with tissue mimics. In this regard, the latest research has shown promising results demonstrating the improvement of cardiac function with different strategies. It is clear from recent studies that the most important consideration to be addressed by new therapeutic strategies is long-term functional improvement. For this goal to be realized, novel and efficient methods of cell delivery are required that enable high cell retention, followed by electrical integration and mechanical coupling of the injected cells or the engineered tissue to the host myocardium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Boilson, B. A., et al. (2010). Device therapy and cardiac transplantation for end-stage heart failure. Current Problems in Cardiology, 35(1), 8–64.

    Article  PubMed  Google Scholar 

  2. Kirkpatrick, J. N., Wiegers, S. E., & Lang, R. M. (2010). Left ventricular assist devices and other devices for end-stage heart failure: utility of echocardiography. Current Cardiology Reports, 12(3), 257–264.

    Article  PubMed  Google Scholar 

  3. Nelson, T. J., Behfar, A., & Terzic, A. (2008). Strategies for therapeutic repair: The “R3” regenerative medicine paradigm. Clinical and Translational Science, 1(2), 168–171.

    Article  PubMed  Google Scholar 

  4. Murry, C. E., Reinecke, H., & Pabon, L. M. (2006). Regeneration gaps: Observations on stem cells and cardiac repair. Journal of the American College of Cardiology, 47(9), 1777–1785.

    Article  PubMed  Google Scholar 

  5. Rossini, R., et al. (2010). Prevention of left ventricular remodelling after acute myocardial infarction: An update. Recent Patents on Cardiovascular Drug Discovery, 5(3), 196–207.

    Article  PubMed  CAS  Google Scholar 

  6. Radisic, M., et al. (2008). Cardiac tissue engineering using perfusion bioreactor systems. Nature Protocols, 3(4), 719–738.

    Article  PubMed  CAS  Google Scholar 

  7. Reinecke, H., et al. (1999). Survival, integration, and differentiation of cardiomyocyte grafts: A study in normal and injured rat hearts. Circulation, 100(2), 193–202.

    PubMed  CAS  Google Scholar 

  8. Herrmann, J. L., et al. (2009). Cell-based therapy for ischemic heart disease: A clinical update. The Annals of Thoracic Surgery, 88(5), 1714–1722.

    Article  PubMed  Google Scholar 

  9. Yoon, S. J., et al. (2009). Regeneration of ischemic heart using hyaluronic acid-based injectable hydrogel. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 91(1), 163–171.

    Article  PubMed  Google Scholar 

  10. Singelyn, J. M., & Christman, K. L. (2010). Injectable materials for the treatment of myocardial infarction and heart failure: The promise of decellularized matrices. Journal of Cardiovascular Translational Research, 3(5), 478–486.

    Article  PubMed  Google Scholar 

  11. Christoforou, N., et al. (2010). Implantation of mouse embryonic stem cell-derived cardiac progenitor cells preserves function of infarcted murine hearts. PloS One, 5(7), e11536.

    Article  PubMed  Google Scholar 

  12. Adler, E. D., et al. (2010). The cardiomyocyte lineage is critical for optimization of stem cell therapy in a mouse model of myocardial infarction. The FASEB Journal, 24(4), 1073–1081.

    Article  PubMed  CAS  Google Scholar 

  13. Caspi, O., et al. (2007). Transplantation of human embryonic stem cell-derived cardiomyocytes improves myocardial performance in infarcted rat hearts. Journal of the American College of Cardiology, 50(19), 1884–1893.

    Article  PubMed  Google Scholar 

  14. Fernandes, S., et al. (2010). Human embryonic stem cell-derived cardiomyocytes engraft but do not alter cardiac remodeling after chronic infarction in rats. Journal of Molecular and Cellular Cardiology, 49(6), 941–949.

    Article  PubMed  CAS  Google Scholar 

  15. Laflamme, M. A., et al. (2007). Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nature Biotechnology, 25(9), 1015–1024.

    Article  PubMed  CAS  Google Scholar 

  16. van Laake, L. W., et al. (2009). Improvement of mouse cardiac function by hESC-derived cardiomyocytes correlates with vascularity but not graft size. Stem Cell Research, 3(2–3), 106–112.

    Article  PubMed  Google Scholar 

  17. Nelson, T. J., et al. (2009). Repair of acute myocardial infarction by human stemness factors induced pluripotent stem cells. Circulation, 120(5), 408–416.

    Article  PubMed  Google Scholar 

  18. Lu, W. N., et al. (2009). Functional improvement of infarcted heart by co-injection of embryonic stem cells with temperature-responsive chitosan hydrogel. Tissue Engineering. Part A, 15(6), 1437–1447.

    Article  PubMed  CAS  Google Scholar 

  19. Fujimoto, K. L., et al. (2009). Naive rat amnion-derived cell transplantation improved left ventricular function and reduced myocardial scar of postinfarcted heart. Cell Transplantation, 18(4), 477–486.

    Article  PubMed  Google Scholar 

  20. Smits, A. M., et al. (2009). Human cardiomyocyte progenitor cell transplantation preserves long-term function of the infarcted mouse myocardium. Cardiovascular Research, 83(3), 527–535.

    Article  PubMed  CAS  Google Scholar 

  21. Landa, N., et al. (2008). Effect of injectable alginate implant on cardiac remodeling and function after recent and old infarcts in rat. Circulation, 117(11), 1388–1396.

    Article  PubMed  CAS  Google Scholar 

  22. Wall, S. T., et al. (2010). Biomimetic matrices for myocardial stabilization and stem cell transplantation. Journal of Biomedical Materials Research. Part A, 95(4), 1055–1066.

    Article  PubMed  Google Scholar 

  23. Dengler, J., et al. (2010). Engineered heart tissue enables study of residual undifferentiated embryonic stem cell activity in a cardiac environment. Biotechnol Bioeng, 108, 704–719.

    Article  PubMed  Google Scholar 

  24. Hansen, A., et al. (2010). Development of a drug screening platform based on engineered heart tissue. Circulation Research, 107(1), 35–44.

    Article  PubMed  CAS  Google Scholar 

  25. Passier, R., van Laake, L. W., & Mummery, C. L. (2008). Stem-cell-based therapy and lessons from the heart. Nature, 453(7193), 322–329.

    Article  PubMed  CAS  Google Scholar 

  26. Segers, V. F. M., & Lee, R. T. (2008). Stem-cell therapy for cardiac disease. Nature, 451(7181), 937–942.

    Article  PubMed  CAS  Google Scholar 

  27. Gnecchi, M., et al. (2005). Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nature Medicine, 11(4), 367–368.

    Article  PubMed  CAS  Google Scholar 

  28. Jawad, H., et al. (2007). Myocardial tissue engineering: A review. Journal of Tissue Engineering and Regenerative Medicine, 1(5), 327–342.

    Article  PubMed  CAS  Google Scholar 

  29. De Falco, M., Cobellis, G., & De Luca, A. (2009). Proliferation of cardiomyocytes: A question unresolved. Frontiers in Bioscience (Elite Ed), 1, 528–536.

    Google Scholar 

  30. Thomson, J. A., et al. (1998). Embryonic stem cell lines derived from human blastocysts. Science, 282(5391), 1145–1147.

    Article  PubMed  CAS  Google Scholar 

  31. Stevens, K. R., et al. (2009). Physiological function and transplantation of scaffold-free and vascularized human cardiac muscle tissue. Proceedings of the National Academy of Sciences of the United States of America, 106(39), 16568–16573.

    Article  PubMed  CAS  Google Scholar 

  32. Stevens, K. R., et al. (2009). Scaffold-free human cardiac tissue patch created from embryonic stem cells. Tissue Engineering. Part A, 15(6), 1211–1222.

    Article  PubMed  CAS  Google Scholar 

  33. Kreutziger, K. L., & Murry, C. E. (2011). Engineered human cardiac tissue. Pediatr Cardiol, 32, 334–341.

    Article  PubMed  Google Scholar 

  34. Ke, Q., et al. (2005). Embryonic stem cells cultured in biodegradable scaffold repair infarcted myocardium in mice. Sheng Li Xue Bao, 57(6), 673–681.

    PubMed  CAS  Google Scholar 

  35. Nussbaum, J., et al. (2007). Transplantation of undifferentiated murine embryonic stem cells in the heart: teratoma formation and immune response. The FASEB Journal, 21(7), 1345–1357.

    Article  PubMed  CAS  Google Scholar 

  36. Chen, Q. Z., et al. (2010). An elastomeric patch derived from poly(glycerol sebacate) for delivery of embryonic stem cells to the heart. Biomaterials, 31(14), 3885–3893.

    Article  PubMed  CAS  Google Scholar 

  37. Engelmayr, G. C., Jr., et al. (2008). Accordion-like honeycombs for tissue engineering of cardiac anisotropy. Nature Materials, 7(12), 1003–1010.

    Article  PubMed  CAS  Google Scholar 

  38. Guo, X. M., et al. (2006). Creation of engineered cardiac tissue in vitro from mouse embryonic stem cells. Circulation, 113(18), 2229–2237.

    Article  PubMed  Google Scholar 

  39. Gwak, S. J., et al. (2008). The effect of cyclic strain on embryonic stem cell-derived cardiomyocytes. Biomaterials, 29(7), 844–856.

    Article  PubMed  CAS  Google Scholar 

  40. Boyd, N. L., et al. (2011). Microvascular mural cell functionality of human embryonic stem cell-derived mesenchymal cells. Tissue Eng Part A, 15, 1897–1907.

    Article  Google Scholar 

  41. Ferreira, L. S., et al. (2007). Vascular progenitor cells isolated from human embryonic stem cells give rise to endothelial and smooth muscle like cells and form vascular networks in vivo. Circulation Research, 101(3), 286–294.

    Article  PubMed  CAS  Google Scholar 

  42. Levenberg, S., et al. (2002). Endothelial cells derived from human embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 99(7), 4391–4396.

    Article  PubMed  CAS  Google Scholar 

  43. Kraehenbuehl, T. P., et al. (2010). Human embryonic stem cell-derived microvascular grafts for cardiac tissue preservation after myocardial infarction. Biomaterials, 32(4), 1102–1109.

    Article  PubMed  Google Scholar 

  44. Caspi, O., et al. (2007). Tissue engineering of vascularized cardiac muscle from human embryonic stem cells. Circulation Research, 100(2), 263–272.

    Article  PubMed  CAS  Google Scholar 

  45. Lesman, A., et al. (2010). Transplantation of a tissue-engineered human vascularized cardiac muscle. Tissue Engineering. Part A, 16(1), 115–125.

    Article  PubMed  CAS  Google Scholar 

  46. Zhang, J., et al. (2009). Functional cardiomyocytes derived from human induced pluripotent stem cells. Circulation Research, 104(4), e30–e41.

    Article  PubMed  CAS  Google Scholar 

  47. Deb, A., et al. (2003). Bone marrow-derived cardiomyocytes are present in adult human heart: A study of gender-mismatched bone marrow transplantation patients. Circulation, 107(9), 1247–1249.

    Article  PubMed  Google Scholar 

  48. Jackson, K. A., et al. (2001). Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. The Journal of Clinical Investigation, 107(11), 1395–1402.

    Article  PubMed  CAS  Google Scholar 

  49. Orlic, D., et al. (2003). Bone marrow stem cells regenerate infarcted myocardium. Pediatric Transplantation, 7(Suppl 3), 86–88.

    Article  PubMed  Google Scholar 

  50. Orlic, D., et al. (2001). Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proceedings of the National Academy of Sciences of the United States of America, 98(18), 10344–10349.

    Article  PubMed  CAS  Google Scholar 

  51. Rosenzweig, A. (2006). Cardiac cell therapy—mixed results from mixed cells. The New England Journal of Medicine, 355(12), 1274–1277.

    Article  PubMed  CAS  Google Scholar 

  52. Oh, H., et al. (2003). Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proceedings of the National Academy of Sciences of the United States of America, 100(21), 12313–12318.

    Article  PubMed  CAS  Google Scholar 

  53. Beltrami, A. P., et al. (2003). Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell, 114(6), 763–776.

    Article  PubMed  CAS  Google Scholar 

  54. Laugwitz, K. L., et al. (2005). Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature, 433(7026), 647–653.

    Article  PubMed  CAS  Google Scholar 

  55. Domian, I. J., et al. (2009). Generation of functional ventricular heart muscle from mouse ventricular progenitor cells. Science, 326(5951), 426–429.

    Article  PubMed  CAS  Google Scholar 

  56. Johnston, P. V., et al. (2009). Engraftment, differentiation, and functional benefits of autologous cardiosphere-derived cells in porcine ischemic cardiomyopathy. Circulation, 120(12), 1075–1083. 7 p following 1083.

    Article  PubMed  CAS  Google Scholar 

  57. Messina, E., et al. (2004). Isolation and expansion of adult cardiac stem cells from human and murine heart. Circulation Research, 95(9), 911–921.

    Article  PubMed  CAS  Google Scholar 

  58. Chimenti, I., et al. (2010). Relative roles of direct regeneration versus paracrine effects of human cardiosphere-derived cells transplanted into infarcted mice. Circulation Research, 106(5), 971–980.

    Article  PubMed  CAS  Google Scholar 

  59. Cheng, K., et al. (2010). Magnetic targeting enhances engraftment and functional benefit of iron-labeled cardiosphere-derived cells in myocardial infarction. Circulation Research, 106(10), 1570–1581.

    Article  PubMed  CAS  Google Scholar 

  60. Alper, J. (2009). Geron gets green light for human trial of ES cell-derived product. Nat Biotech, 27(3), 213–214.

    Article  CAS  Google Scholar 

  61. Chen, S. L., et al. (2004). Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction. The American Journal of Cardiology, 94(1), 92–95.

    Article  PubMed  Google Scholar 

  62. Herreros, J., et al. (2003). Autologous intramyocardial injection of cultured skeletal muscle-derived stem cells in patients with non-acute myocardial infarction. European Heart Journal, 24(22), 2012–2020.

    Article  PubMed  Google Scholar 

  63. Menasche, P., et al. (2003). Autologous skeletal myoblast transplantation for severe postinfarction left ventricular dysfunction. Journal of the American College of Cardiology, 41(7), 1078–1083.

    Article  PubMed  Google Scholar 

  64. Murry, C. E., Field, L. J., & Menasche, P. (2005). Cell-based cardiac repair: Reflections at the 10-year point. Circulation, 112(20), 3174–3183.

    Article  PubMed  Google Scholar 

  65. Pagani, F. D., et al. (2003). Autologous skeletal myoblasts transplanted to ischemia-damaged myocardium in humans. Histological analysis of cell survival and differentiation. Journal of the American College of Cardiology, 41(5), 879–888.

    Article  PubMed  Google Scholar 

  66. Siminiak, T., et al. (2004). Autologous skeletal myoblast transplantation for the treatment of postinfarction myocardial injury: Phase I clinical study with 12 months of follow-up. American Heart Journal, 148(3), 531–537.

    Article  PubMed  Google Scholar 

  67. Sung, N. S., et al. (2003). Central challenges facing the national clinical research enterprise. JAMA, 289(10), 1278–1287.

    Article  PubMed  Google Scholar 

  68. Wollert, K. C., et al. (2004). Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet, 364(9429), 141–148.

    Article  PubMed  Google Scholar 

  69. Hotta, A., & Ellis, J. (2008). Retroviral vector silencing during iPS cell induction: An epigenetic beacon that signals distinct pluripotent states. Journal of Cellular Biochemistry, 105(4), 940–948.

    Article  PubMed  CAS  Google Scholar 

  70. Maherali, N., et al. (2007). Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell, 1(1), 55–70.

    Article  PubMed  CAS  Google Scholar 

  71. Woltjen, K., et al. (2009). Piggybac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature, 27, 559–567.

    Google Scholar 

  72. Laflamme, M. A., & Murry, C. E. (2005). Regenerating the heart. Nature Biotechnology, 23(7), 845–856.

    Article  PubMed  CAS  Google Scholar 

  73. Dengler, J., & Radisic, M. (2007). Tissue engineering approaches for the development of a contractile cardiac patch. Future Cardiology, 3(4), 425–434.

    Article  PubMed  CAS  Google Scholar 

  74. Shimizu, T., et al. (2009). Cell sheet-based myocardial tissue engineering: New hope for damaged heart rescue. Current Pharmaceutical Design, 15(24), 2807–2814.

    Article  PubMed  CAS  Google Scholar 

  75. Zimmermann, W. H., et al. (2006). Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts. Nature Medicine, 12(4), 452–458.

    Article  PubMed  CAS  Google Scholar 

  76. Song, H., et al. (2010). Interrogating functional integration between injected pluripotent stem cell-derived cells and surrogate cardiac tissue. Proceedings of the National Academy of Sciences of the United States of America, 107(8), 3329–3334.

    Article  PubMed  CAS  Google Scholar 

  77. Song, H., Zandstra, P. W., and Radisic, M. (2011). Engineered Heart Tissue Model of Diabetic Myocardium. Tissue Eng Part A.

Download references

Acknowledgments

Financial support for our work is provided by a Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant (RGPIN 326982–10), Discovery Accelerator Supplement (RGPAS 396125–10), NSERC Strategic Grant (STPGP 381002–09), NSERC-Canadian Institutes of Health Research Collaborative Health Research Grant (CHRPJ 385981–10), and Heart and Stroke Foundation of Ontario Grant-in-Aid (T6946).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sara S. Nunes or Milica Radisic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nunes, S.S., Song, H., Chiang, C.K. et al. Stem Cell-Based Cardiac Tissue Engineering. J. of Cardiovasc. Trans. Res. 4, 592–602 (2011). https://doi.org/10.1007/s12265-011-9307-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-011-9307-x

Keywords

Navigation