Skip to main content

Advertisement

Log in

Hybrid Gel Composed of Native Heart Matrix and Collagen Induces Cardiac Differentiation of Human Embryonic Stem Cells without Supplemental Growth Factors

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Our goal was to assess the ability of native heart extracellular matrix (ECM) to direct cardiac differentiation of human embryonic stem cells (hESCs) in vitro. In order to probe the effects of cardiac matrix on hESC differentiation, a series of hydrogels was prepared from decellularized ECM from porcine hearts by mixing ECM and collagen type I at varying ratios. Maturation of cardiac function in embryoid bodies formed from hESCs was documented in terms of spontaneous contractile behavior and the mRNA and protein expression of cardiac markers. Hydrogel with high ECM content (75% ECM, 25% collagen, no supplemental soluble factors) increased the fraction of cells expressing cardiac marker troponin T, when compared with either hydrogel with low ECM content (25% ECM, 75% collagen, no supplemental soluble factors) or collagen hydrogel (100% collagen, with supplemental soluble factors). Furthermore, cardiac maturation was promoted in high-ECM content hydrogels, as evidenced by the striation patterns of cardiac troponin I and by upregulation of Cx43 gene. Consistently, high-ECM content hydrogels improved the contractile function of cardiac cells, as evidenced by increased numbers of contracting cells and increased contraction amplitudes. The ability of native ECM hydrogel to induce cardiac differentiation of hESCs without the addition of soluble factors makes it an attractive biomaterial system for basic studies of cardiac development and potentially for the delivery of therapeutic cells into the heart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mirsadraee, S., Wilcox, H. E., Korossis, S. A., Kearney, J. N., Watterson, K. G., Fisher, J., et al. (2006). Development and characterization of an acellular human pericardial matrix for tissue engineering. Tissue Engineering, 12, 763–773.

    Article  PubMed  CAS  Google Scholar 

  2. Singelyn, J. M., DeQuach, J. A., Seif-Naraghi, S. B., Littlefield, R. B., Schup-Magoffin, P. J., & Christman, K. L. (2009). Naturally derived myocardial matrix as an injectable scaffold for cardiac tissue engineering. Biomaterials, 30, 5409–5416.

    Article  PubMed  CAS  Google Scholar 

  3. Yang, L., Soonpaa, M. H., Adler, E. D., Roepke, T. K., Kattman, S. J., Kennedy, M., et al. (2008). Human cardiovascular progenitor cells develop from a KDR+embryonic-stem-cell-derived population. Nature, 453, 524–528.

    Article  PubMed  CAS  Google Scholar 

  4. Scadden, D. T. (2006). The stem-cell niche as an entity of action. Nature, 441, 1075–1079.

    Article  PubMed  CAS  Google Scholar 

  5. Vunjak-Novakovic, G., & Scadden, D. T. (2011). Biomimetic platforms for human stem cell research. Cell Stem Cell, 8, 252–261.

    Article  PubMed  CAS  Google Scholar 

  6. Discher, D. E., Mooney, D. J., & Zandstra, P. W. (2009). Growth factors, matrices, and forces combine and control stem cells. Science, 324, 1673–1677.

    Article  PubMed  CAS  Google Scholar 

  7. Nuttelman, C. R., Tripodi, M. C., & Anseth, K. S. (2005). Synthetic hydrogel niches that promote hMSC viability. Matrix Biology, 24, 208–218.

    Article  PubMed  CAS  Google Scholar 

  8. Dawson, E., Mapili, G., Erickson, K., Taqvi, S., & Roy, K. (2008). Biomaterials for stem cell differentiation. Advanced Drug Delivery Reviews, 60, 215–228.

    Article  PubMed  CAS  Google Scholar 

  9. Burdick, J. A., & Vunjak-Novakovic, G. (2009). Engineered microenvironments for controlled stem cell differentiation. Tissue Engineering. Part A, 15, 205–219.

    Article  PubMed  CAS  Google Scholar 

  10. Abed, A., Deval, B., Assoul, N., Bataille, I., Portes, P., Louedec, L., et al. (2008). A biocompatible polysaccharide hydrogel-embedded polypropylene mesh for enhanced tissue integration in rats. Tissue Engineering. Part A, 14, 519–527.

    Article  PubMed  CAS  Google Scholar 

  11. Gerecht, S., Burdick, J. A., Ferreira, L. S., Townsend, S. A., Langer, R., & Vunjak-Novakovic, G. (2007). Hyaluronic acid hydrogel for controlled self-renewal and differentiation of human embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 104, 11298–11303.

    Article  PubMed  CAS  Google Scholar 

  12. Park, H., Radisic, M., Lim, J. O., Chang, B. H., & Vunjak-Novakovic, G. (2005). A novel composite scaffold for cardiac tissue engineering. In Vitro Cellular & Developmental Biology. Animal, 41, 188–196.

    Article  CAS  Google Scholar 

  13. Tabata, Y., & Ikada, Y. (1999). Vascularization effect of basic fibroblast growth factor released from gelatin hydrogels with different biodegradabilities. Biomaterials, 20, 2169–2175.

    Article  PubMed  CAS  Google Scholar 

  14. Vandenburgh, H. H., Karlisch, P., & Farr, L. (1988). Maintenance of highly contractile tissue-cultured avian skeletal myotubes in collagen gel. In Vitro Cellular & Developmental Biology, 24, 166–174.

    Article  CAS  Google Scholar 

  15. Kofidis, T., de Bruin, J. L., Hoyt, G., Ho, Y., Tanaka, M., Yamane, T., et al. (2005). Myocardial restoration with embryonic stem cell bioartificial tissue transplantation. The Journal of Heart and Lung Transplantation, 24, 737–744.

    Article  PubMed  Google Scholar 

  16. Robinson, K. A., Li, J., Mathison, M., Redkar, A., Cui, J., Chronos, N. A., et al. (2005). Extracellular matrix scaffold for cardiac repair. Circulation, 112, I135–I143.

    Article  PubMed  Google Scholar 

  17. Kennedy, M., D’Souza, S. L., Lynch-Kattman, M., Schwantz, S., & Keller, G. (2007). Development of the hemangioblast defines the onset of hematopoiesis in human ES cell differentiation cultures. Blood, 109, 2679–2687.

    PubMed  CAS  Google Scholar 

  18. Wainwright, J. M., Czajka, C. A., Patel, U. B., Freytes, D. O., Tobita, K., Gilbert, T. W., et al. (2010). Preparation of cardiac extracellular matrix from an intact porcine heart. Tissue Engineering. Part C, Methods, 16, 525–532.

    Article  PubMed  CAS  Google Scholar 

  19. Freytes, D. O., Martin, J., Velankar, S. S., Lee, A. S., & Badylak, S. F. (2008). Preparation and rheological characterization of a gel form of the porcine urinary bladder matrix. Biomaterials, 29, 1630–1637.

    Article  PubMed  CAS  Google Scholar 

  20. Wan, L. Q., Jiang, J., Miller, D. E., Guo, X. E., Mow, V. C., & Lu, H. H. (2011). Matrix deposition modulates the viscoelastic shear properties of hydrogel-based cartilage grafts. Tissue Engineering. Part A, 17, 1111–1122.

    Article  PubMed  CAS  Google Scholar 

  21. Duan, Y., Gotoh, N., Yan, Q., Du, Z., Weinstein, A. M., Wang, T., et al. (2008). Shear-induced reorganization of renal proximal tubule cell actin cytoskeleton and apical junctional complexes. Proceedings of the National Academy of Sciences of the United States of America, 105, 11418–11423.

    Article  PubMed  CAS  Google Scholar 

  22. Duan, Y., Weinstein, A. M., Weinbaum, S., & Wang, T. (2010). Shear stress-induced changes of membrane transporter localization and expression in mouse proximal tubule cells. Proceedings of the National Academy of Sciences of the United States of America, 107, 21860–21865.

    Article  PubMed  CAS  Google Scholar 

  23. Schmittgen, T. D., & Livak, K. J. (2008). Analyzing real-time PCR data by the comparative C(T) method. Nature Protocols, 3, 1101–1108.

    Article  PubMed  CAS  Google Scholar 

  24. Kreger, S. T., Bell, B. J., Bailey, J., Stites, E., Kuske, J., Waisner, B., et al. (2010). Polymerization and matrix physical properties as important design considerations for soluble collagen formulations. Biopolymers, 93, 690–707.

    PubMed  CAS  Google Scholar 

  25. Christman, K. L., Fok, H. H., Sievers, R. E., Fang, Q., & Lee, R. J. (2004). Fibrin glue alone and skeletal myoblasts in a fibrin scaffold preserve cardiac function after myocardial infarction. Tissue Engineering, 10, 403–409.

    Article  PubMed  CAS  Google Scholar 

  26. Leor, J., Amsalem, Y., & Cohen, S. (2005). Cells, scaffolds, and molecules for myocardial tissue engineering. Pharmacology and Therapeutics, 105, 151–163.

    Article  PubMed  CAS  Google Scholar 

  27. Lutolf, M. P., & Hubbell, J. A. (2005). Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nature Biotechnology, 23, 47–55.

    Article  PubMed  CAS  Google Scholar 

  28. Uriel, S., Labay, E., Francis-Sedlak, M., Moya, M. L., Weichselbaum, R. R., Ervin, N., et al. (2009). Extraction and assembly of tissue-derived gels for cell culture and tissue engineering. Tissue Engineering. Part C, Methods, 15, 309–321.

    Article  PubMed  CAS  Google Scholar 

  29. Radisic, M., Euloth, M., Yang, L., Langer, R., Freed, L. E., & Vunjak-Novakovic, G. (2003). High-density seeding of myocyte cells for cardiac tissue engineering. Biotechnology and Bioengineering, 82, 403–414.

    Article  PubMed  CAS  Google Scholar 

  30. Zimmermann, W. H., Melnychenko, I., & Eschenhagen, T. (2004). Engineered heart tissue for regeneration of diseased hearts. Biomaterials, 25, 1639–1647.

    Article  PubMed  CAS  Google Scholar 

  31. Badylak, S. F. (2007). The extracellular matrix as a biologic scaffold material. Biomaterials, 28, 3587–3593.

    Article  PubMed  CAS  Google Scholar 

  32. Brown, L. (2005). Cardiac extracellular matrix: A dynamic entity. American Journal of Physiology. Heart and Circulatory Physiology, 289, H973–H974.

    Article  PubMed  CAS  Google Scholar 

  33. Rosso, F., Giordano, A., Barbarisi, M., & Barbarisi, A. (2004). From cell-ECM interactions to tissue engineering. Journal of Cellular Physiology, 199, 174–180.

    Article  PubMed  CAS  Google Scholar 

  34. Badylak, S. F., Kochupura, P. V., Cohen, I. S., Doronin, S. V., Saltman, A. E., Gilbert, T. W., et al. (2006). The use of extracellular matrix as an inductive scaffold for the partial replacement of functional myocardium. Cell Transplantation, 15(Suppl 1), S29–S40.

    Article  PubMed  Google Scholar 

  35. Battista, S., Guarnieri, D., Borselli, C., Zeppetelli, S., Borzacchiello, A., Mayol, L., et al. (2005). The effect of matrix composition of 3D constructs on embryonic stem cell differentiation. Biomaterials, 26, 6194–6207.

    Article  PubMed  CAS  Google Scholar 

  36. Yarnitzky, T., & Volk, T. (1995). Laminin is required for heart, somatic muscles, and gut development in the Drosophila embryo. Developmental Biology, 169, 609–618.

    Article  PubMed  CAS  Google Scholar 

  37. Chen, Q. Z., Bismarck, A., Hansen, U., Junaid, S., Tran, M. Q., Harding, S. E., et al. (2008). Characterisation of a soft elastomer poly(glycerol sebacate) designed to match the mechanical properties of myocardial tissue. Biomaterials, 29, 47–57.

    Article  PubMed  Google Scholar 

  38. Wang, L. S., Chung, J. E., Chan, P. P., & Kurisawa, M. (2010). Injectable biodegradable hydrogels with tunable mechanical properties for the stimulation of neurogenesic differentiation of human mesenchymal stem cells in 3D culture. Biomaterials, 31, 1148–1157.

    Article  PubMed  Google Scholar 

  39. Engler, A. J., Sen, S., Sweeney, H. L., & Discher, D. E. (2006). Matrix elasticity directs stem cell lineage specification. Cell, 126, 677–689.

    Article  PubMed  CAS  Google Scholar 

  40. Li, Z., Guo, X., Matsushita, S., & Guan, J. (2011). Differentiation of cardiosphere-derived cells into a mature cardiac lineage using biodegradable poly(N-isopropylacrylamide) hydrogels. Biomaterials, 32, 3220–3232.

    Article  PubMed  CAS  Google Scholar 

  41. Young, J. L., & Engler, A. J. (2011). Hydrogels with time-dependent material properties enhance cardiomyocyte differentiation in vitro. Biomaterials, 32, 1002–1009.

    Article  PubMed  CAS  Google Scholar 

  42. Ladd, A. N., Yatskievych, T. A., & Antin, P. B. (1998). Regulation of avian cardiac myogenesis by activin/TGFbeta and bone morphogenetic proteins. Developmental Biology, 204, 407–419.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The authors gratefully acknowledge the funding support of this work by the NIH (grants HL076485 and EB002520 to GVN), NYSTEM (grant C026721 to DOF), Columbia University and Helmsley Foundation (grant CU11-0138 to GVN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gordana Vunjak-Novakovic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duan, Y., Liu, Z., O’Neill, J. et al. Hybrid Gel Composed of Native Heart Matrix and Collagen Induces Cardiac Differentiation of Human Embryonic Stem Cells without Supplemental Growth Factors. J. of Cardiovasc. Trans. Res. 4, 605–615 (2011). https://doi.org/10.1007/s12265-011-9304-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-011-9304-0

Keywords

Navigation