Skip to main content
Log in

Intracardiac Echocardiography in Congenital Heart Disease

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

The use of intracardiac echocardiography (ICE) in congenital heart disease has become well established over the past 7 years since its introduction into clinical imaging. The greatest experience has been to guide percutaneous device closures of secundum atrial septal defects and patent foramen ovale, with excellent safety and clinical results. However, ICE has also been used for the evaluation and management of many other congenital heart defects given its unique blood/transducer interface and close proximity to relevant cardiac anatomy. Clinical application of ICE is expanding, with the current ICE catheters being used as micro-transesophageal echo probes, and three-dimensional prototypes already developed and tested in animal models. It is expected that ICE will further increase in use with refinements in technology and greater operator experience, aiding the management of complex congenital heart disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Alboliras, E. T., & Hijazi, Z. M. (2004). Comparison of costs of intracardiac echocardiography and transesophageal echocardiography in monitoring percutaneous device closure of atrial septal defect in children and adults. American Journal of Cardiology, 94, 690–692.

    Article  PubMed  Google Scholar 

  2. Aleong, R., Heist, E. K., Ruskin, J. N., & Mansour, M. (2008). Integration of intracardiac echocardiography with magnetic resonance imaging allows visualization of the esophagus during catheter ablation of atrial fibrillation. Heart Rhythm, 5, 1088.

    Article  PubMed  Google Scholar 

  3. Bartel, T., Konorza, T., Arjumand, J., Ebradlidze, T., Eggebrecht, H., Caspari, G., Neudorf, U., & Erbel, R. (2003). Intracardiac echocardiography is superior to conventional monitoring for guiding device closure of interatrial communications. Circulation, 107, 795–797.

    Article  PubMed  Google Scholar 

  4. Bartel, T., Konorza, T., Neudorf, U., Ebralize, T., Eggebrecht, H., Gutersohn, A., & Erbel, R. (2005). Intracardiac echocardiography: an ideal guiding tool for device closure of interatrial communications. European Journal of Echocardiography, 6, 92–96.

    Article  PubMed  Google Scholar 

  5. Boccalandro, F., Baptista, E., Muench, A., Carter, C., & Smalling, R. W. (2004). Comparison of intracardiac echocardiography versus transesophageal echocardiography guidance for percutaneous transcatheter closure of atrial septal defect. American Journal of Cardiology, 93, 437–440.

    Article  PubMed  Google Scholar 

  6. Brosnan, R. B., Crowley, A. L., Russo, C. A., & Jollis, J. G. (2005). Transesophageal assessment of left atrial thrombus using a 3.3-mm monoplane probe. Journal of the American Society of Echocardiography, 18, 1381–1384.

    Article  PubMed  Google Scholar 

  7. Bruce, C. J., Nishimura, R. A., Rihal, C. S., Hagler, D. J., Higano, S. T., Seward, J. B., & Holmes, D. R. (2002a). Intracardiac echocardiography in the interventional catheterization laboratory: preliminary experience with a novel, phased-array transducer. American Journal of Cardiology, 89, 635–640.

    Article  PubMed  Google Scholar 

  8. Bruce, C. J., O'Leary, P., Hagler, D. J., Seward, J. B., & Cabalka, A. K. (2002b). Miniaturized transesophageal echocardiography in newborn infants. Journal of the American Society of Echocardiography, 15, 791–797.

    Article  PubMed  Google Scholar 

  9. Bruce, C. J., Packer, D. L., O'Leary, P. W., & Seward, J. B. (1999). Feasibility study: transesophageal echocardiography with a 10F (3.2-mm), multifrequency (5.5- to 10-MHz) ultrasound catheter in a small rabbit model. Journal of the American Society of Echocardiography, 12, 596–600.

    Article  PubMed  CAS  Google Scholar 

  10. Burstow, D. J., West, M. L., & Walters, D. L. (2006). Intracardiac echo guided valvuloplasty of a stenotic tricuspid prosthetic valve in a patient with idiopathic hypereosinophilic syndrome. Echocardiography, 23, 324–328.

    Article  PubMed  Google Scholar 

  11. Cao, Q. L., Zabal, C., Koenig, P., Sandhu, S., & Hijazi, Z. M. (2005). Initial clinical experience with intracardiac echocardiography in guiding transcatheter closure of perimembranous ventricular septal defects: feasibility and comparison with transesophageal echocardiography. Catheterization and Cardiovascular Interventions, 66, 258–267.

    Article  PubMed  Google Scholar 

  12. Chessa, M., Butera, G., & Carminati, M. (2008). Intracardiac echocardiography during percutaneous pulmonary valve replacement. European Heart Journal, 29(33), 2908.

    Article  PubMed  Google Scholar 

  13. Daccarett, M., Segerson, N. M., Gunther, J., Nolker, G., Gutleben, K., Brachmann, J., & Marrouche, N. F. (2007). Blinded correlation study of three-dimensional electro-anatomical image integration and phased array intra-cardiac echocardiography for left atrial mapping. Europace, 9, 923–926.

    Article  PubMed  Google Scholar 

  14. den Uijl, D. W., Tops, L. F., Tolosana, J. M., Schuijf, J. D., Trines, S. A., Zeppenfeld, K., Bax, J. J., & Schalij, M. J. (2008). Real-time integration of intracardiac echocardiography and multislice computed tomography to guide radiofrequency catheter ablation for atrial fibrillation. Heart Rhythm, 5(10), 1403–1410.

    Article  PubMed  Google Scholar 

  15. Drinker, L. R., Camitta, M. G., Herlong, J. R., Miller, S., Lodge, A. J., Jaggers, J., & Barker, P. C. (2008). Use of the monoplane intracardiac imaging probe in high-risk infants during congenital heart surgery. Echocardiography, 25(9), 999–1003.

    Article  PubMed  Google Scholar 

  16. Earing, M. G., Cabalka, A. K., Seward, J. B., Bruce, C. J., Reeder, G. S., & Hagler, D. J. (2004). Intracardiac echocardiographic guidance during transcatheter device closure of atrial septal defect and patent foramen ovale. Mayo Clinic Proceedings, 79, 24–34.

    Article  PubMed  Google Scholar 

  17. Gao, Z., Li, J., Kehoe, V., Davidson Jr., W. R., Sinoway, L., & Pu, M. (2005). An initial application of transesophageal Doppler echocardiography in experimental small animal models. Journal of the American Society of Echocardiography, 18, 626–631.

    Article  PubMed  Google Scholar 

  18. Gentry, K. L., & Smith, S. W. (2004). Integrated catheter for 3-D intracardiac echocardiography and ultrasound ablation. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 51, 800–808.

    Article  PubMed  Google Scholar 

  19. Greco, C., Chiavari, P. A., Campolongo, G., Mariani, S., Messa, F., Tallarico, D., Schiariti, M., Gonnella, C., & Gaudio, C. (2008). Transnasal transesophageal echocardiography: a new approach for the PFO occlusion in awake patients. Catheterization and Cardiovascular Interventions, 72, 538–541.

    Article  PubMed  Google Scholar 

  20. Hijazi, Z., Wang, Z., Cao, Q., Koenig, P., Waight, D., & Lang, R. (2001). Transcatheter closure of atrial septal defects and patent foramen ovale under intracardiac echocardiographic guidance: feasibility and comparison with transesophageal echocardiography. Catheterization and Cardiovascular Interventions, 52, 194–199.

    Article  PubMed  CAS  Google Scholar 

  21. Horowitz, B. N., Vaseghi, M., Mahajan, A., Cesario, D. A., Buch, E., Valderrabano, M., Boyle, N. G., Ellenbogen, K. A., & Shivkumar, K. (2006). Percutaneous intrapericardial echocardiography during catheter ablation: a feasibility study. Heart Rhythm, 3, 1275–1282.

    Article  PubMed  Google Scholar 

  22. Khaykin, Y., Klemm, O., & Verma, A. (2008). First human experience with real-time integration of intracardiac echocardiography and 3D electroanatomical imaging to guide right free wall accessory pathway ablation. Europace, 10, 116–117.

    Article  PubMed  Google Scholar 

  23. Knackstedt, C., Franke, A., Mischke, K., Zarse, M., Gramley, F., Schimpf, T., Plisiene, J., Muehlenbruch, G., Spuentrup, E., Ernst, S., et al. (2006). Semi-automated 3-dimensional intracardiac echocardiography: development and initial clinical experience of a new system to guide ablation procedures. Heart Rhythm, 3, 1453–1459.

    Article  PubMed  Google Scholar 

  24. Koenig, P., Cao, Q. L., Heitschmidt, M., Waight, D. J., & Hijazi, Z. M. (2003). Role of intracardiac echocardiographic guidance in transcatheter closure of atrial septal defects and patent foramen ovale using the Amplatzer device. Journal of Interventional Cardiology, 16, 51–62.

    Article  PubMed  Google Scholar 

  25. Lee, W., Idriss, S. F., Wolf, P. D., & Smith, S. W. (2003). Dual lumen transducer probes for real-time 3-D interventional cardiac ultrasound. Ultrasound in Medicine & Biology, 29, 1297–1304.

    Article  Google Scholar 

  26. Lee, W., Idriss, S. F., Wolf, P. D., & Smith, S. W. (2004). A miniaturized catheter 2-D array for real-time, 3-D intracardiac echocardiography. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 51, 1334–1346.

    Article  PubMed  Google Scholar 

  27. Light, E. D., & Smith, S. W. (2004). Two dimensional arrays for real time 3D intravascular ultrasound. Ultrasonic Imaging, 26, 115–128.

    PubMed  Google Scholar 

  28. Lu, L., Ko, E., Schwartz, G. G., & Chou, T. M. (1997). Transesophageal echocardiography in rats using an intravascular ultrasound catheter. American Journal of Physiology, 273, H2078–2082.

    PubMed  CAS  Google Scholar 

  29. Luxenberg, D. M., Silvestry, F. E., Herrmann, H. C., Cao, Q. L., Rohatgi, S., & Hijazi, Z. M. (2005). Use of a new 8 French intracardiac echocardiographic catheter to guide device closure of atrial septal defects and patent foramen ovale in small children and adults: initial clinical experience. Journal of Invasive Cardiology, 17, 540–545.

    PubMed  Google Scholar 

  30. Mullen, M. J., Dias, B. F., Walker, F., Siu, S. C., Benson, L. N., & McLaughlin, P. R. (2003). Intracardiac echocardiography guided device closure of atrial septal defects. Journal of the American College of Cardiology, 41, 285–292.

    Article  PubMed  Google Scholar 

  31. Nazarian, S., Knight, B. P., Dickfeld, T. L., Zviman, M. M., Jayanti, V. B., Amundson, D., Hanlin, J., Castleberry, J., Smith, M. F., Blankenship, L., et al. (2005). Direct visualization of coronary sinus ostium and branches with a flexible steerable fiberoptic infrared endoscope. Heart Rhythm, 2, 844–848.

    Article  PubMed  Google Scholar 

  32. Okumura, Y., Watanabe, I., Ashino, S., Kofune, M., Ohkubo, K., Takagi, Y., Kawauchi, K., Yamada, T., Hashimoto, K., Shindo, A., et al. (2007). Electrophysiologic and anatomical characteristics of the right atrial posterior wall in patients with and without atrial flutter: analysis by intracardiac echocardiography. Circulation Journal, 71, 636–642.

    Article  PubMed  Google Scholar 

  33. Orsini, A. N., Kolias, T. J., Strelich, K. R., & Armstrong, W. F. (2003). Feasibility of transesophageal echocardiography with a ten-French monoplane probe. Journal of the American Society of Echocardiography, 16, 682–687.

    Article  PubMed  Google Scholar 

  34. Park, S. W., Gwon, H. C., Jeong, J. O., Byun, J., Kang, H. S., You, J. R., Cho, S. S., Lee, M. J., Lee, Y., Kim, S., et al. (2001). Intracardiac echocardiographic guidance and monitoring during percutaneous endomyocardial gene injection in porcine heart. Human Gene Therapy, 12, 893–903.

    Article  PubMed  CAS  Google Scholar 

  35. Patel, A., Cao, Q. L., Koenig, P. R., & Hijazi, Z. M. (2006). Intracardiac echocardiography to guide closure of atrial septal defects in children less than 15 kilograms. Catheterization and Cardiovascular Interventions, 68, 287–291.

    Article  PubMed  Google Scholar 

  36. Rhodes Jr., J. F., Qureshi, A. M., Preminger, T. J., Tuzcu, E. M., Casserly, I. P., Dauterman, K. W., Prieto, L. R., Mesia, C. I., Lane, G. K., Radvansky, P. A., et al. (2003). Intracardiac echocardiography during transcatheter interventions for congenital heart disease. American Journal of Cardiology, 92, 1482–1484.

    Article  PubMed  Google Scholar 

  37. Rigatelli, G., Cardaioli, P., Braggion, G., Aggio, S., Giordan, M., Magro, B., Nascimben, A., Favaro, A., & Roncon, L. (2007). Transesophageal echocardiography and intracardiac echocardiography differently predict potential technical challenges or failures of interatrial shunts catheter-based closure. Journal of Interventional Cardiology, 20, 77–81.

    Article  PubMed  Google Scholar 

  38. Salem, M. I., Makaryus, A. N., Kort, S., Chung, E., Marchant, D., Ong, L., & Mangion, J. (2002). Intracardiac echocardiography using the AcuNav ultrasound catheter during percutaneous balloon mitral valvuloplasty. Journal of the American Society of Echocardiography, 15, 1533–1537.

    Article  PubMed  Google Scholar 

  39. Sheikh, I., Kumar, D., Liu, Z., Kantharia, B., MacMillan, R., Fyfe, B. S., Narula, J., & Vannan, M. (2003). Novel uses of intracardiac echocardiography with a phased-array imaging catheter. Journal of the American Society of Echocardiography, 16, 1073–1077.

    Article  PubMed  Google Scholar 

  40. Smith, S. W., Light, E. D., Idriss, S. F., & Wolf, P. D. (2002). Feasibility study of real-time three-dimensional intracardiac echocardiography for guidance of interventional electrophysiology. Pacing and Clinical Electrophysiology, 25, 351–357.

    Article  PubMed  Google Scholar 

  41. Sze, D. Y., Lee, D. P., Hofmann, L. V., & Petersen, B. (2008). Biopsy of cardiac masses using a stabilized intracardiac echocardiography-guided system. Journal of Vascular and Interventional Radiology, 19(11), 1662–1667.

    Article  PubMed  Google Scholar 

  42. Szili-Torok, T., Kimman, G. J., Scholten, M. F., Ligthart, J., Bruining, N., Theuns, D. A., Klootwijk, P. J., Roelandt, J. R., & Jordaens, L. J. (2002). Interatrial septum pacing guided by three-dimensional intracardiac echocardiography. Journal of the American College of Cardiology, 40, 2139–2143.

    Article  PubMed  Google Scholar 

  43. Vasilyev, N. V., Martinez, J. F., Freudenthal, F. P., Suematsu, Y., Marx, G. R., & del Nido, P. J. (2006). Three-dimensional echo and videocardioscopy-guided atrial septal defect closure. Annals of Thoracic Surgery, 82, 1322–1326; discussion 1326.

    Article  PubMed  Google Scholar 

  44. Yeh, D. T., Oralkan, O., Wygant, I. O., O'Donnell, M., & Khuri-Yakub, B. T. (2006). 3-D ultrasound imaging using a forward-looking CMUT ring array for intravascular/intracardiac applications. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 53, 1202–1211.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piers C. A. Barker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barker, P.C.A. Intracardiac Echocardiography in Congenital Heart Disease. J. of Cardiovasc. Trans. Res. 2, 19–23 (2009). https://doi.org/10.1007/s12265-009-9088-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-009-9088-7

Keywords

Navigation