Skip to main content
Log in

Low-frequency Stimulation at the Subiculum Prevents Extensive Secondary Epileptogenesis in Temporal Lobe Epilepsy

  • Original Article
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Secondary epileptogenesis is characterized by increased epileptic susceptibility and a tendency to generate epileptiform activities outside the primary focus. It is one of the major resultants of pharmacoresistance and failure of surgical outcomes in epilepsy, but still lacks effective treatments. Here, we aimed to test the effects of low-frequency stimulation (LFS) at the subiculum for secondary epileptogenesis in a mouse model. Here, secondary epileptogenesis was simulated at regions both contralateral and ipsilateral to the primary focus by applying successive kindling stimuli. Mice kindled at the right CA3 showed higher seizure susceptibilities at both the contralateral CA3 and the ipsilateral entorhinal cortex and had accelerated kindling processes compared with naive mice. LFS at the ipsilateral subiculum during the primary kindling progress at the right CA3 effectively prevented secondary epileptogenesis at both the contralateral CA3 and the ipsilateral entorhinal cortex, characterized by decreased seizure susceptibilities and a retarded kindling process at those secondary foci. Only application along with the primary epileptogenesis was effective. Notably, the effects of LFS on secondary epileptogenesis were associated with its inhibitory effect at the secondary focus through interfering with the enhancement of synaptic connections between the primary and secondary foci. These results imply that LFS at the subiculum is an effective preventive strategy for extensive secondary epileptogenesis in temporal lobe epilepsy and present the subiculum as a target with potential translational importance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fisher RS, Acevedo C, Arzimanoglou A, Bogacz A, Cross JH, Elger CE. ILAE official report: A practical clinical definition of epilepsy. Epilepsia 2014, 55: 475–482.

    Article  PubMed  Google Scholar 

  2. Goldensohn ES. The relevance of secondary epileptogenesis to the treatment of epilepsy: Kindling and the mirror focus. Epilepsia 1984, 25: S156–S173.

    Article  PubMed  Google Scholar 

  3. Shen Y, Gong Y, Ruan Y, Chen Z, Xu C. Secondary epileptogenesis: Common to see, but possible to treat? Front Neurol 2021, 12: 747372.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kalilani L, Sun X, Pelgrims B, Noack-Rink M, Villanueva V. The epidemiology of drug-resistant epilepsy: A systematic review and meta-analysis. Epilepsia 2018, 59: 2179–2193.

    Article  PubMed  Google Scholar 

  5. Xu C, Gong Y, Wang Y, Chen Z. New advances in pharmacoresistant epilepsy towards precise management-from prognosis to treatments. Pharmacol Ther 2022, 233: 108026.

    Article  CAS  PubMed  Google Scholar 

  6. Xu C, Wang Y, Zhang S, Nao J, Liu Y, Wang Y, et al. Subicular pyramidal neurons gate drug resistance in temporal lobe epilepsy. Ann Neurol 2019, 86: 626–640.

    Article  CAS  PubMed  Google Scholar 

  7. Paschen E, Elgueta C, Heining K, Vieira DM, Kleis P, Orcinha C, et al. Hippocampal low-frequency stimulation prevents seizure generation in a mouse model of mesial temporal lobe epilepsy. Elife 2020, 9: e54518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Li MCH, Cook MJ. Deep brain stimulation for drug-resistant epilepsy. Epilepsia 2018, 59: 273–290.

    Article  PubMed  Google Scholar 

  9. Theodore WH, Fisher RS. Brain stimulation for epilepsy. Lancet Neurol 2004, 3: 111–118.

    Article  PubMed  Google Scholar 

  10. Fisher RS. Deep brain stimulation of thalamus for epilepsy. Neurobiol Dis 2023, 179: 106045.

    Article  PubMed  Google Scholar 

  11. Fisher R, Salanova V, Witt T, Worth R, Henry T, Gross R, et al. Electrical stimulation of the anterior nucleus of thalamus for treatment of refractory epilepsy. Epilepsia 2010, 51: 899–908.

    Article  PubMed  Google Scholar 

  12. Ryvlin P, Rheims S, Hirsch LJ, Sokolov A, Jehi L. Neuromodulation in epilepsy: State-of-the-art approved therapies. Lancet Neurol 2021, 20: 1038–1047.

    Article  PubMed  Google Scholar 

  13. Moss J, Ryder T, Aziz TZ, Graeber MB, Bain PG. Electron microscopy of tissue adherent to explanted electrodes in dystonia and Parkinson’s disease. Brain 2004, 127: 2755–2763.

    Article  CAS  PubMed  Google Scholar 

  14. Feddersen B, Vercueil L, Noachtar S, David O, Depaulis A, Deransart C. Controlling seizures is not controlling epilepsy: A parametric study of deep brain stimulation for epilepsy. Neurobiol Dis 2007, 27: 292–300.

    Article  PubMed  Google Scholar 

  15. Koubeissi MZ, Kahriman E, Syed TU, Miller J, Durand DM. Low-frequency electrical stimulation of a fiber tract in temporal lobe epilepsy. Ann Neurol 2013, 74: 223–231.

    Article  PubMed  Google Scholar 

  16. Koubeissi MZ, Joshi S, Eid A, Emami M, Jaafar N, Syed T, et al. Low-frequency stimulation of a fiber tract in bilateral temporal lobe epilepsy. Epilepsy Behav 2022, 130: 108667.

    Article  PubMed  Google Scholar 

  17. Wang Y, Liang J, Xu C, Wang Y, Kuang Y, Xu Z, et al. Low-frequency stimulation in anterior nucleus of thalamus alleviates kainate-induced chronic epilepsy and modulates the hippocampal EEG rhythm. Exp Neurol 2016, 276: 22–30.

    Article  PubMed  Google Scholar 

  18. Toprani S, Durand DM. Long-lasting hyperpolarization underlies seizure reduction by low frequency deep brain electrical stimulation. J Physiol 2013, 591: 5765–5790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kuang Y, Xu C, Zhang Y, Wang Y, Wu X, Wang Y, et al. Low-frequency stimulation of the primary focus retards positive transfer of secondary focus. Sci Rep 2017, 7: 345.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wu DC, Xu ZH, Wang S, Fang Q, Hu DQ, Li Q, et al. Time-dependent effect of low-frequency stimulation on amygdaloid-kindling seizures in rats. Neurobiol Dis 2008, 31: 74–79.

    Article  CAS  PubMed  Google Scholar 

  21. O’Mara SM, Commins S, Anderson M, Gigg J. The subiculum: A review of form, physiology and function. Prog Neurobiol 2001, 64: 129–155.

    Article  PubMed  Google Scholar 

  22. Fei F, Wang X, Wang Y, Chen Z. Dissecting the role of subiculum in epilepsy: Research update and translational potential. Prog Neurobiol 2021, 201: 102029.

    Article  PubMed  Google Scholar 

  23. Lévesque M, Avoli M. The subiculum and its role in focal epileptic disorders. Rev Neurosci 2021, 32: 249–273.

    Article  PubMed  Google Scholar 

  24. Huberfeld G, Wittner L, Clemenceau S, Baulac M, Kaila K, Miles R, et al. Perturbed chloride homeostasis and GABAergic signaling in human temporal lobe epilepsy. J Neurosci 2007, 27: 9866–9873.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang Y, Xu C, Xu Z, Ji C, Liang J, Wang Y, et al. Depolarized GABAergic signaling in subicular microcircuits mediates generalized seizure in temporal lobe epilepsy. Neuron 2017, 95: 1221.

    Article  CAS  PubMed  Google Scholar 

  26. Xu C, Zhang S, Gong Y, Nao J, Shen Y, Tan B, et al. Subicular caspase-1 contributes to pharmacoresistance in temporal lobe epilepsy. Ann Neurol 2021, 90: 377–390.

    Article  CAS  PubMed  Google Scholar 

  27. Fei F, Wang X, Xu C, Shi J, Gong Y, Cheng H, et al. Discrete subicular circuits control generalization of hippocampal seizures. Nat Commun 2022, 13: 5010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Benini R, Avoli M. Rat subicular networks gate hippocampal output activity in an in vitro model of limbic seizures. J Physiol 2005, 566: 885–900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhong K, Wu DC, Jin MM, Xu ZH, Wang Y, Hou WW, et al. Wide therapeutic time-window of low-frequency stimulation at the subiculum for temporal lobe epilepsy treatment in rats. Neurobiol Dis 2012, 48: 20–26.

    Article  PubMed  Google Scholar 

  30. Ruan Y, Xu C, Lan J, Nao J, Zhang S, Fan F, et al. Low-frequency stimulation at the subiculum is anti-convulsant and anti-drug-resistant in a mouse model of lamotrigine-resistant temporal lobe epilepsy. Neurosci Bull 2020, 36: 654–658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Vázquez-Barrón D, Cuéllar-Herrera M, Velasco F, Velasco AL. Electrical stimulation of subiculum for the treatment of refractory mesial temporal lobe epilepsy with hippocampal sclerosis: A 2-year follow-up study. Stereotact Funct Neurosurg 2021, 99: 40–47.

    Article  PubMed  Google Scholar 

  32. Bondallaz P, Boëx C, Rossetti AO, Foletti G, Spinelli L, Vulliemoz S, et al. Electrode location and clinical outcome in hippocampal electrical stimulation for mesial temporal lobe epilepsy. Seizure 2013, 22: 390–395.

    Article  PubMed  Google Scholar 

  33. Chen B, Xu C, Wang Y, Lin W, Wang Y, Chen L, et al. A disinhibitory nigra-parafascicular pathway amplifies seizure in temporal lobe epilepsy. Nat Commun 2020, 11: 923.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Xu CL, Nao JZ, Shen YJ, Gong YW, Tan B, Zhang S, et al. Long-term music adjuvant therapy enhances the efficacy of sub-dose antiepileptic drugs in temporal lobe epilepsy. CNS Neurosci Ther 2022, 28: 206–217.

    Article  CAS  PubMed  Google Scholar 

  35. Paxinos G, Watson G (1998) The Rat Brain in Stereotaxic Coordinates, 4th edn. Academic Press, San Diego, pp 96–101.

    Google Scholar 

  36. Wang Y, Wang Y, Xu C, Wang S, Tan N, Chen C, et al. Direct septum-hippocampus cholinergic circuit attenuates seizure through driving somatostatin inhibition. Biol Psychiatry 2020, 87: 843–856.

    Article  CAS  PubMed  Google Scholar 

  37. Racine RJ. Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalogr Clin Neurophysiol 1972, 32: 281–294.

    Article  CAS  PubMed  Google Scholar 

  38. Löscher W. Animal models of seizures and epilepsy: Past, present, and future role for the discovery of antiseizure drugs. Neurochem Res 2017, 42: 1873–1888.

    Article  PubMed  Google Scholar 

  39. Sutula T, Harrison C, Steward O. Chronic epileptogenesis induced by kindling of the entorhinal cortex: The role of the dentate gyrus. Brain Res 1986, 385: 291–299.

    Article  CAS  PubMed  Google Scholar 

  40. Spiller AE, Racine RJ. Transfer kindling between sites in the entorhinal cortex-perforant path-dentate gyrus system. Brain Res 1994, 635: 130–138.

    Article  CAS  PubMed  Google Scholar 

  41. Xu Z, Wang Y, Chen B, Xu C, Wu X, Wang Y, et al. Entorhinal principal neurons mediate brain-stimulation treatments for epilepsy. EBioMedicine 2016, 14: 148–160.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Xu C, Wang S, Wang Y, Lin K, Pan G, Xu Z, et al. A decrease of ripples precedes seizure onset in mesial temporal lobe epilepsy. Exp Neurol 2016, 284: 29–37.

    Article  PubMed  Google Scholar 

  43. Gerlei KZ, Brown CM, Sürmeli G, Nolan MF. Deep entorhinal cortex: From circuit organization to spatial cognition and memory. Trends Neurosci 2021, 44: 876–887.

    Article  CAS  PubMed  Google Scholar 

  44. Robinson GB. Kindling-induced potentiation of excitatory and inhibitory inputs to hippocampal dentate granule cells. II. Effects of the NMDA antagonist MK-801. Brain Res 1991, 562: 26–33.

  45. Barthó P, Hirase H, Monconduit L, Zugaro M, Harris KD, Buzsáki G. Characterization of neocortical principal cells and interneurons by network interactions and extracellular features. J Neurophysiol 2004, 92: 600–608.

    Article  PubMed  Google Scholar 

  46. Khalilov I, Holmes GL, Ben-Ari Y. In vitro formation of a secondary epileptogenic mirror focus by interhippocampal propagation of seizures. Nat Neurosci 2003, 6: 1079–1085.

    Article  CAS  PubMed  Google Scholar 

  47. Liu Y, Wang Y, Xu Z, Xu C, Ying X, Wang S, et al. Consecutive 15 min is necessary for focal low frequency stimulation to inhibit amygdaloid-kindling seizures in rats. Epilepsy Res 2013, 106: 47–53.

    Article  PubMed  Google Scholar 

  48. Sobayo T, Mogul DJ. Rapid onset of a kainate-induced mirror focus in rat hippocampus is mediated by contralateral AMPA receptors. Epilepsy Res 2013, 106: 35–46.

    Article  CAS  PubMed  Google Scholar 

  49. Cela E, McFarlan AR, Chung AJ, Wang T, Chierzi S, Murai KK, et al. An optogenetic kindling model of neocortical epilepsy. Sci Rep 2019, 9: 5236.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Ben-Ari Y, Dudek FE. Primary and secondary mechanisms of epileptogenesis in the temporal lobe: There is a before and an after. Epilepsy Curr 2010, 10: 118–125.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Eliashiv SD, Dewar S, Wainwright I, Engel J, Fried I. Long-term follow-up after temporal lobe resection for lesions associated with chronic seizures. Neurology 1997, 48: 1383–1388.

    Article  CAS  PubMed  Google Scholar 

  52. Gollwitzer S, Scott CA, Farrell F, Bell GS, de Tisi J, Walker MC, et al. The long-term course of temporal lobe epilepsy: From unilateral to bilateral interictal epileptiform discharges in repeated video-EEG monitorings. Epilepsy Behav 2017, 68: 17–21.

    Article  PubMed  Google Scholar 

  53. Fisher RS, Velasco AL. Electrical brain stimulation for epilepsy. Nat Rev Neurol 2014, 10: 261–270.

    Article  PubMed  Google Scholar 

  54. Doyle CA, Cullen WK, Rowan MJ, Anwyl R. Low-frequency stimulation induces homosynaptic depotentiation but not long-term depression of synaptic transmission in the adult anaesthetized and awake rat hippocampus in vivo. Neuroscience 1997, 77: 75–85.

    Article  CAS  PubMed  Google Scholar 

  55. Morrell F. Secondary epileptogenesis in man. Arch Neurol 1985, 42: 318–335.

    Article  CAS  PubMed  Google Scholar 

  56. Morrell F, deToledo-Morrell L. From mirror focus to secondary epileptogenesis in man: An historical review. Adv Neurol 1999, 81: 11–23.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (U21A20418 and 82173796); the Natural Science Foundation of Zhejiang Province (LD22H310003); and the Research Project of Zhejiang Chinese Medical University (2023JKZDZC04).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhong Chen or Cenglin Xu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Y., Gong, Y., Da, X. et al. Low-frequency Stimulation at the Subiculum Prevents Extensive Secondary Epileptogenesis in Temporal Lobe Epilepsy. Neurosci. Bull. (2024). https://doi.org/10.1007/s12264-023-01173-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12264-023-01173-z

Keywords

Navigation