Skip to main content
Log in

Cross-Modal Interaction and Integration Through Stimulus-Specific Adaptation in the Thalamic Reticular Nucleus of Rats

  • Original Article
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Stimulus-specific adaptation (SSA), defined as a decrease in responses to a common stimulus that only partially generalizes to other rare stimuli, is a widespread phenomenon in the brain that is believed to be related to novelty detection. Although cross-modal sensory processing is also a widespread phenomenon, the interaction between the two phenomena is not well understood. In this study, the thalamic reticular nucleus (TRN), which is regarded as a hub of the attentional system that contains multi-modal neurons, was investigated. The results showed that SSA existed in an interactive oddball stimulation, which mimics stimulation changes from one modality to another. In the bimodal integration, SSA to bimodal stimulation was stronger than to visual stimulation alone but similar to auditory stimulation alone, which indicated a limited integrative effect. Collectively, the present results provide evidence for independent cross-modal processing in bimodal TRN neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Khouri L, Nelken I. Detecting the unexpected. Curr Opin Neurobiol 2015, 35: 142–147.

    Article  CAS  PubMed  Google Scholar 

  2. Malmierca MS, Sanchez-Vives MV, Escera C, Bendixen A. Neuronal adaptation, novelty detection and regularity encoding in audition. Front Syst Neurosci 2014, 8: 111.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Duque D, Ayala YA, Malmierca MS. Deviance detection in auditory subcortical structures: What can we learn from neurochemistry and neural connectivity? Cell Tissue Res 2015, 361: 215–232.

    Article  PubMed  Google Scholar 

  4. Zhai YY, Sun ZH, Gong YM, Tang Y, Yu XJ. Integrative stimulus-specific adaptation of the natural sounds in the auditory cortex of the awake rat. Brain Struct Funct 2019, 224: 1753–1766.

    Article  PubMed  Google Scholar 

  5. Rui YY, He J, Zhai YY, Sun ZH, Yu X. Frequency-dependent stimulus-specific adaptation and regularity sensitivity in the rat auditory thalamus. Neuroscience 2018, 392: 13–24.

    Article  CAS  PubMed  Google Scholar 

  6. Carbajal GV, Malmierca MS. The neuronal basis of predictive coding along the auditory pathway: From the subcortical roots to cortical deviance detection. Trends Hear 2018, 22: 2331216518784822.

    PubMed  PubMed Central  Google Scholar 

  7. Malmierca MS, Anderson LA, Antunes FM. The cortical modulation of stimulus-specific adaptation in the auditory midbrain and thalamus: A potential neuronal correlate for predictive coding. Front Syst Neurosci 2015, 9: 19.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Müller JR, Metha AB, Krauskopf J, Lennie P. Rapid adaptation in visual cortex to the structure of images. Science 1999, 285: 1405–1408.

    Article  PubMed  Google Scholar 

  9. Musall S, Haiss F, Weber B, von der Behrens W. Deviant processing in the primary somatosensory cortex. Cereb Cortex 2017, 27: 863–876.

    PubMed  Google Scholar 

  10. Reches A, Netser S, Gutfreund Y. Interactions between stimulus-specific adaptation and visual auditory integration in the forebrain of the barn owl. J Neurosci 2010, 30: 6991–6998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang WY, Hu L, Cui HY, Xie XB, Hu Y. Spatio-temporal measures of electrophysiological correlates for behavioral multisensory enhancement during visual, auditory and somatosensory stimulation: A behavioral and ERP study. Neurosci Bull 2013, 29: 715–724.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Whitchurch EA, Takahashi TT. Combined auditory and visual stimuli facilitate head saccades in the barn owl (Tyto alba). J Neurophysiol 2006, 96: 730–745.

    Article  PubMed  Google Scholar 

  13. Narins PM, Grabul DS, Soma KK, Gaucher P, Hödl W. Cross-modal integration in a dart-poison frog. Proc Natl Acad Sci U S A 2005, 102: 2425–2429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shosaku A, Sumitomo I. Auditory neurons in the rat thalamic reticular nucleus. Exp Brain Res 1983, 49: 432–442.

    Article  CAS  PubMed  Google Scholar 

  15. Pinault D. The thalamic reticular nucleus: Structure, function and concept. Brain Res Brain Res Rev 2004, 46: 1–31.

    Article  PubMed  Google Scholar 

  16. Jones EG. The Thalamus. 2nd ed. Cambridge; New York: Cambridge University Press, 2007: 218–224.

  17. Crick F. Function of the thalamic reticular complex: The searchlight hypothesis. Proc Natl Acad Sci U S A 1984, 81: 4586–4590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. McAlonan K, Cavanaugh J, Wurtz RH. Guarding the gateway to cortex with attention in visual thalamus. Nature 2008, 456: 391–394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yu XJ, Xu XX, Chen X, He SG, He JF. Slow recovery from excitation of thalamic reticular nucleus neurons. J Neurophysiol 2009, 101: 980–987.

    Article  PubMed  Google Scholar 

  20. Yu XJ, Xu XX, He SG, He JF. Change detection by thalamic reticular neurons. Nat Neurosci 2009, 12: 1165–1170.

    Article  CAS  PubMed  Google Scholar 

  21. Xu XX, Zhai YY, Kou XK, Yu XJ. Adaptation facilitates spatial discrimination for deviant locations in the thalamic reticular nucleus of the rat. Neuroscience 2017, 365: 1–11.

    Article  CAS  PubMed  Google Scholar 

  22. Yu XJ, Meng XK, Xu XX, He J. Individual auditory thalamic reticular neurons have large and cross-modal sources of cortical and thalamic inputs. Neuroscience 2011, 193: 122–131.

    Article  CAS  PubMed  Google Scholar 

  23. Song PR, Zhai YY, Gong YM, Du XY, He J, Zhang QC. Adaptation in the dorsal belt and core regions of the auditory cortex in the awake rat. Neuroscience 2021, 455: 79–88.

    Article  CAS  PubMed  Google Scholar 

  24. Paxinos G, Watson C. The Rat Brain in Stereotaxic Coordinates, Elsevier Academic Press, Amsterdam, 2005, pp 86–111.

    Google Scholar 

  25. Antunes FM, Nelken I, Covey E, Malmierca MS. Stimulus-specific adaptation in the auditory thalamus of the anesthetized rat. PLoS One 2010, 5: e14071.

  26. Ulanovsky N, Las L, Nelken I. Processing of low-probability sounds by cortical neurons. Nat Neurosci 2003, 6: 391–398.

    Article  CAS  PubMed  Google Scholar 

  27. Malmierca MS, Cristaudo S, Pérez-González D, Covey E. Stimulus-specific adaptation in the inferior colliculus of the anesthetized rat. J Neurosci 2009, 29: 5483–5493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Farley BJ, Quirk MC, Doherty JJ, Christian EP. Stimulus-specific adaptation in auditory cortex is an NMDA-independent process distinct from the sensory novelty encoded by the mismatch negativity. J Neurosci 2010, 30: 16475–16484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Taaseh N, Yaron A, Nelken I. Stimulus-specific adaptation and deviance detection in the rat auditory cortex. PLoS One 2011, 6: e23369.

  30. Fishman YI, Steinschneider M. Searching for the mismatch negativity in primary auditory cortex of the awake monkey: Deviance detection or stimulus specific adaptation? J Neurosci 2012, 32: 15747–15758.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Driver J, Spence C. Multisensory perception: Beyond modularity and convergence. Curr Biol 2000, 10: R731–R735.

    Article  CAS  PubMed  Google Scholar 

  32. Shimojo S, Shams L. Sensory modalities are not separate modalities: Plasticity and interactions. Curr Opin Neurobiol 2001, 11: 505–509.

    Article  CAS  PubMed  Google Scholar 

  33. Gutfreund Y. Stimulus-specific adaptation, habituation and change detection in the gaze control system. Biol Cybern 2012, 106: 657–668.

    Article  PubMed  Google Scholar 

  34. Kimura A. Diverse subthreshold cross-modal sensory interactions in the thalamic reticular nucleus: Implications for new pathways of cross-modal attentional gating function. Eur J Neurosci 2014, 39: 1405–1418.

    Article  PubMed  Google Scholar 

  35. Kimura A, Yokoi I, Imbe H, Donishi T, Kaneoke Y. Auditory thalamic reticular nucleus of the rat: Anatomical nodes for modulation of auditory and cross-modal sensory processing in the loop connectivity between the cortex and thalamus. J Comp Neurol 2012, 520: 1457–1480.

    Article  PubMed  Google Scholar 

  36. Donishi T, Kimura A, Imbe H, Yokoi I, Kaneoke Y. Sub-threshold cross-modal sensory interaction in the thalamus: Lemniscal auditory response in the medial geniculate nucleus is modulated by somatosensory stimulation. Neuroscience 2011, 174: 200–215.

    Article  CAS  PubMed  Google Scholar 

  37. Noesselt T, Tyll S, Boehler CN, Budinger E, Heinze HJ, Driver J. Sound-induced enhancement of low-intensity vision: Multisensory influences on human sensory-specific cortices and thalamic bodies relate to perceptual enhancement of visual detection sensitivity. J Neurosci 2010, 30: 13609–13623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mill R, Coath M, Wennekers T, Denham SL. A neurocomputational model of stimulus-specific adaptation to oddball and Markov sequences. PLoS Comput Biol 2011, 7: e1002117.

  39. Zhai YY, Auksztulewicz R, Song PR, Sun ZH, Gong YM, Du XY, et al. Synaptic adaptation contributes to stimulus-specific adaptation in the thalamic reticular nucleus. Neurosci Bull 2020, 36: 1538–1541.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to Yale E. Cohen for editing the manuscript and Xiaokai Kou for his help with the experiments. This work was supported by the National Natural Science Foundation of China (31872768, 32171044, and 32100827), and Zhejiang University K.P. Chao’s High Technology Development Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiongjie Yu.

Ethics declarations

Conflict of interest

The authors claim that there are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, Y., Zhai, Y., Du, X. et al. Cross-Modal Interaction and Integration Through Stimulus-Specific Adaptation in the Thalamic Reticular Nucleus of Rats. Neurosci. Bull. 38, 785–795 (2022). https://doi.org/10.1007/s12264-022-00827-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-022-00827-8

Keywords

Navigation