Skip to main content
Log in

A Systematic Characterization of Structural Brain Changes in Schizophrenia

  • Original Article
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

A systematic characterization of the similarities and differences among different methods for detecting structural brain abnormalities in schizophrenia, such as voxel-based morphometry (VBM), tensor-based morphometry (TBM), and projection-based thickness (PBT), is important for understanding the brain pathology in schizophrenia and for developing effective biomarkers for a diagnosis of schizophrenia. However, such studies are still lacking. Here, we performed VBM, TBM, and PBT analyses on T1-weighted brain MR images acquired from 116 patients with schizophrenia and 116 healthy controls. We found that, although all methods detected wide-spread structural changes, different methods captured different information – only 10.35% of the grey matter changes in cortex were detected by all three methods, and VBM only detected 11.36% of the white matter changes detected by TBM. Further, pattern classification between patients and controls revealed that combining different measures improved the classification accuracy (81.9%), indicating that fusion of different structural measures serves as a better neuroimaging marker for the objective diagnosis of schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hu ML, Zong XF, Mann JJ, Zheng JJ, Liao YH, Li ZC, et al. A review of the functional and anatomical default mode network in schizophrenia. Neurosci Bull 2017, 33: 73–84.

    PubMed  CAS  Google Scholar 

  2. Greenstein D, Malley JD, Weisinger B, Clasen L, Gogtay N. Using multivariate machine learning methods and structural MRI to classify childhood onset schizophrenia and healthy controls. Front Psychiatry 2012, 3: 53.

    PubMed  PubMed Central  Google Scholar 

  3. Millier A, Schmidt U, Angermeyer MC, Chauhan D, Murthy V, Toumi M, et al. Humanistic burden in schizophrenia: a literature review. J Psychiatr Res 2014, 54: 85–93.

    PubMed  CAS  Google Scholar 

  4. Pettersson-Yeo W, Benetti S, Marquand AF, Dell’acqua F, Williams SC, Allen P, et al. Using genetic, cognitive and multi-modal neuroimaging data to identify ultra-high-risk and first-episode psychosis at the individual level. Psychol Med 2013, 43: 2547–2562.

    PubMed  PubMed Central  CAS  Google Scholar 

  5. Bansal R, Staib LH, Laine AF, Hao X, Xu D, Liu J, et al. Anatomical brain images alone can accurately diagnose chronic neuropsychiatric illnesses. PLoS One 2012, 7: e50698.

    PubMed  PubMed Central  CAS  Google Scholar 

  6. Ashburner J, Friston KJ. Voxel-based morphometry–the methods. Neuroimage 2000, 11: 805–821.

    PubMed  CAS  Google Scholar 

  7. Gaser C, Volz HP, Kiebel S, Riehemann S, Sauer H. Detecting structural changes in whole brain based on nonlinear deformations-application to schizophrenia research. Neuroimage 1999, 10: 107–113.

    PubMed  CAS  Google Scholar 

  8. Ashburner J, Hutton C, Frackowiak R, Johnsrude I, Price C, Friston K. Identifying global anatomical differences: deformation-based morphometry. Hum Brain Mapp 1998, 6: 348–357.

    PubMed  PubMed Central  CAS  Google Scholar 

  9. Dahnke R, Yotter RA, Gaser C. Cortical thickness and central surface estimation. Neuroimage 2013, 65: 336–348.

    PubMed  Google Scholar 

  10. Wright IC, McGuire PK, Poline JB, Travere JM, Murray RM, Frith CD, et al. A voxel-based method for the statistical analysis of gray and white matter density applied to schizophrenia. Neuroimage 1995, 2: 244–252.

    PubMed  CAS  Google Scholar 

  11. Gaser C, Nenadic I, Buchsbaum BR, Hazlett EA, Buchsbaum MS. Deformation-based morphometry and its relation to conventional volumetry of brain lateral ventricles in MRI. Neuroimage 2001, 13: 1140–1145.

    PubMed  CAS  Google Scholar 

  12. Seiger R, Ganger S, Kranz GS, Hahn A, Lanzenberger R. Cortical thickness estimations of freeSurfer and the CAT12 toolbox in patients with Alzheimer’s disease and healthy controls. J Neuroimaging 2018, 28: 515–523.

    PubMed  PubMed Central  Google Scholar 

  13. Lawrie SM, Abukmeil SS. Brain abnormality in schizophrenia. A systematic and quantitative review of volumetric magnetic resonance imaging studies. Br J Psychiatry 1998, 172: 110–120.

  14. Bora E, Fornito A, Yucel M, Pantelis C. The effects of gender on grey matter abnormalities in major psychoses: a comparative voxelwise meta-analysis of schizophrenia and bipolar disorder. Psychol Med 2012, 42: 295–307.

    PubMed  CAS  Google Scholar 

  15. Nelson MD, Saykin AJ, Flashman LA, Riordan HJ. Hippocampal volume reduction in schizophrenia as assessed by magnetic resonance imaging: a meta-analytic study. Arch Gen Psychiatry 1998, 55: 433–440.

    PubMed  CAS  Google Scholar 

  16. Shenton ME, Dickey CC, Frumin M, McCarley RW. A review of MRI findings in schizophrenia. Schizophr Res 2001, 49: 1–52.

    PubMed  PubMed Central  CAS  Google Scholar 

  17. Shepherd AM, Laurens KR, Matheson SL, Carr VJ, Green MJ. Systematic meta-review and quality assessment of the structural brain alterations in schizophrenia. Neurosci Biobehav Rev 2012, 36: 1342–1356.

    PubMed  Google Scholar 

  18. Vitolo E, Tatu MK, Pignolo C, Cauda F, Costa T, Ando A, et al. White matter and schizophrenia: a meta-analysis of voxel-based morphometry and diffusion tensor imaging studies. Psychiatry Res 2017, 270: 8–21.

    Google Scholar 

  19. Di X, Chan RC, Gong QY. White matter reduction in patients with schizophrenia as revealed by voxel-based morphometry: an activation likelihood estimation meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry 2009, 33: 1390–1394.

    PubMed  Google Scholar 

  20. Paillere-Martinot M, Caclin A, Artiges E, Poline JB, Joliot M, Mallet L, et al. Cerebral gray and white matter reductions and clinical correlates in patients with early onset schizophrenia. Schizophr Res 2001, 50: 19–26.

    PubMed  CAS  Google Scholar 

  21. Volz H, Gaser C, Sauer H. Supporting evidence for the model of cognitive dysmetria in schizophrenia–a structural magnetic resonance imaging study using deformation-based morphometry. Schizophr Res 2000, 46: 45–56.

    PubMed  CAS  Google Scholar 

  22. Gaser C, Nenadic I, Buchsbaum BR, Hazlett EA, Buchsbaum MS. Ventricular enlargement in schizophrenia related to volume reduction of the thalamus, striatum, and superior temporal cortex. Am J Psychiatry 2004, 161: 154–156.

    PubMed  Google Scholar 

  23. Dubb A, Xie Z, Gur R, Gur R, Gee J. Characterization of brain plasticity in schizophrenia using template deformation. Acad Radiol 2005, 12: 3–9.

    PubMed  Google Scholar 

  24. Yushkevich P, Dubb A, Xie Z, Gur R, Gur R, Gee J. Regional structural characterization of the brain of schizophrenia patients. Acad Radiol 2005, 12: 1250–1261.

    PubMed  Google Scholar 

  25. Rimol LM, Hartberg CB, Nesvag R, Fennema-Notestine C, Hagler DJ, Jr., Pung CJ, et al. Cortical thickness and subcortical volumes in schizophrenia and bipolar disorder. Biol Psychiatry 2010, 68: 41–50.

    PubMed  Google Scholar 

  26. Schultz CC, Koch K, Wagner G, Roebel M, Nenadic I, Schachtzabel C, et al. Complex pattern of cortical thinning in schizophrenia: results from an automated surface based analysis of cortical thickness. Psychiatry Res 2010, 182: 134–140.

    PubMed  Google Scholar 

  27. Manjon JV, Coupe P, Marti-Bonmati L, Collins DL, Robles M. Adaptive non-local means denoising of MR images with spatially varying noise levels. J Magn Reson Imaging 2010, 31: 192–203.

    PubMed  Google Scholar 

  28. Ashburner J. A fast diffeomorphic image registration algorithm. Neuroimage 2007, 38: 95-113.

    PubMed  Google Scholar 

  29. Ashburner J, Friston KJ. Diffeomorphic registration using geodesic shooting and Gauss-Newton optimisation. Neuroimage 2011, 55: 954–967.

    PubMed  PubMed Central  Google Scholar 

  30. Rajapakse JC, Giedd JN, Rapoport JL. Statistical approach to segmentation of single-channel cerebral MR images. IEEE Trans Med Imaging 1997, 16: 176–186.

    PubMed  CAS  Google Scholar 

  31. Tohka J, Zijdenbos A, Evans A. Fast and robust parameter estimation for statistical partial volume models in brain MRI. Neuroimage 2004, 23: 84–97.

    PubMed  Google Scholar 

  32. Yotter RA, Dahnke R, Thompson PM, Gaser C. Topological correction of brain surface meshes using spherical harmonics. Hum Brain Mapp 2011, 32: 1109–1124.

    PubMed  Google Scholar 

  33. Yotter RA, Thompson PM, Gaser C. Algorithms to improve the reparameterization of spherical mappings of brain surface meshes. J Neuroimaging 2011, 21: e134–147.

    PubMed  Google Scholar 

  34. Lin Y, Li M, Zhou Y, Deng W, Ma X, Wang Q, et al. Age-related reduction in cortical thickness in first-episode treatment-naive patients with Schizophrenia. Neurosci Bull 2019, 35: 688–696.

    PubMed  PubMed Central  Google Scholar 

  35. Pell GS, Briellmann RS, Chan CH, Pardoe H, Abbott DF, Jackson GD. Selection of the control group for VBM analysis: influence of covariates, matching and sample size. Neuroimage 2008, 41: 1324–1335.

    PubMed  Google Scholar 

  36. Malone IB, Leung KK, Clegg S, Barnes J, Whitwell JL, Ashburner J, et al. Accurate automatic estimation of total intracranial volume: a nuisance variable with less nuisance. Neuroimage 2015, 104: 366–372.

    PubMed  PubMed Central  Google Scholar 

  37. Hutton C, Draganski B, Ashburner J, Weiskopf N. A comparison between voxel-based cortical thickness and voxel-based morphometry in normal aging. Neuroimage 2009, 48: 371–380.

    PubMed  PubMed Central  Google Scholar 

  38. Spalthoff R, Gaser C, Nenadic I. Altered gyrification in schizophrenia and its relation to other morphometric markers. Schizophr Res 2018, 202: 195–202.

    PubMed  Google Scholar 

  39. Rahayel S, Gaubert M, Postuma RB, Montplaisir J, Carrier J, Monchi O, et al. Brain atrophy in Parkinson’s disease with polysomnography-confirmed REM sleep behavior disorder. Sleep 2019, 42.

  40. Peng Y, Zhang X, Li Y, Wang S, Su Q, Liu F, et al. MVPANI: a toolkit with friendly graphical user interface for multivariate pattern analysis of neuroimaging data. Front Neurosci 2020, https://doi.org/10.3389/fnins.2020.00545.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Chang CC, Lin CJ. LIBSVM: A library for support vector machines. Acm Transactions on Intelligent Systems and Technology 2011, 2.

  42. Ashburner J, Friston KJ. Unified segmentation. Neuroimage 2005, 26: 839–851.

    PubMed  Google Scholar 

  43. Khan AR, Wang L, Beg MF. Unified voxel- and tensor-based morphometry (UVTBM) using registration confidence. Neurobiol Aging 2015, 36 Suppl 1: S60–68.

    PubMed  Google Scholar 

  44. Eckert MA, Tenforde A, Galaburda AM, Bellugi U, Korenberg JR, Mills D, et al. To modulate or not to modulate: differing results in uniquely shaped Williams syndrome brains. Neuroimage 2006, 32: 1001–1007.

    PubMed  Google Scholar 

  45. Davatzikos C, Genc A, Xu D, Resnick SM. Voxel-based morphometry using the RAVENS maps: methods and validation using simulated longitudinal atrophy. Neuroimage 2001, 14: 1361–1369.

    PubMed  CAS  Google Scholar 

  46. Borghammer P, Ostergaard K, Cumming P, Gjedde A, Rodell A, Hall N, et al. A deformation-based morphometry study of patients with early-stage Parkinson’s disease. Eur J Neurol 2010, 17: 314–320.

    PubMed  CAS  Google Scholar 

  47. Xiao Y, Lui S, Deng W, Yao L, Zhang W, Li S, et al. Altered cortical thickness related to clinical severity but not the untreated disease duration in schizophrenia. Schizophr Bull 2015, 41: 201–210.

    PubMed  Google Scholar 

  48. Anticevic A, Dierker DL, Gillespie SK, Repovs G, Csernansky JG, Van Essen DC, et al. Comparing surface-based and volume-based analyses of functional neuroimaging data in patients with schizophrenia. Neuroimage 2008, 41: 835–848.

    PubMed  PubMed Central  Google Scholar 

  49. Ziegler DA, Piguet O, Salat DH, Prince K, Connally E, Corkin S. Cognition in healthy aging is related to regional white matter integrity, but not cortical thickness. Neurobiol Aging 2010, 31: 1912–1926.

    PubMed  Google Scholar 

  50. Maingault S, Tzourio-Mazoyer N, Mazoyer B, Crivello F. Regional correlations between cortical thickness and surface area asymmetries: a surface-based morphometry study of 250 adults. Neuropsychologia 2016, 93: 350–364.

    PubMed  Google Scholar 

  51. Panizzon MS, Fennema-Notestine C, Eyler LT, Jernigan TL, Prom-Wormley E, Neale M, et al. Distinct genetic influences on cortical surface area and cortical thickness. Cereb Cortex 2009, 19: 2728–2735.

    PubMed  PubMed Central  Google Scholar 

  52. Salat DH, Lee SY, van der Kouwe AJ, Greve DN, Fischl B, Rosas HD. Age-associated alterations in cortical gray and white matter signal intensity and gray to white matter contrast. Neuroimage 2009, 48: 21–28.

    PubMed  PubMed Central  CAS  Google Scholar 

  53. Palaniyappan L, Liddle PF. Differential effects of surface area, gyrification and cortical thickness on voxel based morphometric deficits in schizophrenia. Neuroimage 2012, 60: 693–699.

    PubMed  Google Scholar 

  54. Kong L, Herold CJ, Zollner F, Salat DH, Lasser MM, Schmid LA, et al. Comparison of grey matter volume and thickness for analysing cortical changes in chronic schizophrenia: a matter of surface area, grey/white matter intensity contrast, and curvature. Psychiatry Res 2015, 231: 176–183.

    PubMed  Google Scholar 

  55. Kong L, Herold C, Stieltjes B, Essig M, Seidl U, Wolf RC, et al. Reduced gray to white matter tissue intensity contrast in schizophrenia. PLoS One 2012, 7: e37016.

    PubMed  PubMed Central  CAS  Google Scholar 

  56. Kuperberg GR, Broome MR, McGuire PK, David AS, Eddy M, Ozawa F, et al. Regionally localized thinning of the cerebral cortex in schizophrenia. Arch Gen Psychiatry 2003, 60: 878–888.

    PubMed  Google Scholar 

  57. Kawasaki Y, Suzuki M, Kherif F, Takahashi T, Zhou SY, Nakamura K, et al. Multivariate voxel-based morphometry successfully differentiates schizophrenia patients from healthy controls. Neuroimage 2007, 34: 235–242.

    PubMed  Google Scholar 

  58. Dietsche B, Kircher T, Falkenberg I. Structural brain changes in schizophrenia at different stages of the illness: a selective review of longitudinal magnetic resonance imaging studies. Aust N Z J Psychiatry 2017, 51: 500–508.

    PubMed  Google Scholar 

  59. Kikinis Z, Fallon JH, Niznikiewicz M, Nestor P, Davidson C, Bobrow L, et al. Gray matter volume reduction in rostral middle frontal gyrus in patients with chronic schizophrenia. Schizophr Res 2010, 123: 153–159.

    PubMed  PubMed Central  CAS  Google Scholar 

  60. Potkin SG, Turner JA, Brown GG, McCarthy G, Greve DN, Glover GH, et al. Working memory and DLPFC inefficiency in schizophrenia: the FBIRN study. Schizophr Bull 2009, 35: 19–31.

    PubMed  CAS  Google Scholar 

  61. Kim GW, Chung YC, Yang JC, Chung GH, Park TJ, Jeong GW. Neuroanatomical mechanism on the effect of distraction in working memory maintenance in patients with schizophrenia. J Neuropsychiatry Clin Neurosci 2015, 27: e1–9.

    PubMed  Google Scholar 

  62. Cui Y, Liu B, Song M, Lipnicki DM, Li J, Xie S, et al. Auditory verbal hallucinations are related to cortical thinning in the left middle temporal gyrus of patients with schizophrenia. Psychol Med 2018, 48: 115–122.

    PubMed  CAS  Google Scholar 

  63. McGuire PK, Silbersweig DA, Wright I, Murray RM, David AS, Frackowiak RS, et al. Abnormal monitoring of inner speech: a physiological basis for auditory hallucinations. Lancet 1995, 346: 596–600.

    PubMed  CAS  Google Scholar 

  64. Duggal HS, Muddasani S, Keshavan MS. Insular volumes in first-episode schizophrenia: gender effect. Schizophr Res 2005, 73: 113–120.

    PubMed  Google Scholar 

  65. Wylie KP, Tregellas JR. The role of the insula in schizophrenia. Schizophr Res 2010, 123: 93–104.

    PubMed  PubMed Central  Google Scholar 

  66. Mueser KT, Bellack AS, Douglas MS, Wade JH. Prediction of social skill acquisition in schizophrenic and major affective disorder patients from memory and symptomatology. Psychiatry Res 1991, 37: 281–296.

    PubMed  CAS  Google Scholar 

  67. Hogstrom LJ, Westlye LT, Walhovd KB, Fjell AM. The structure of the cerebral cortex across adult life: age-related patterns of surface area, thickness, and gyrification. Cereb Cortex 2013, 23: 2521–2530.

    PubMed  Google Scholar 

  68. Winkler AM, Kochunov P, Blangero J, Almasy L, Zilles K, Fox PT, et al. Cortical thickness or grey matter volume? The importance of selecting the phenotype for imaging genetics studies. Neuroimage 2010, 53: 1135–1146.

    PubMed  Google Scholar 

  69. Voets NL, Hough MG, Douaud G, Matthews PM, James A, Winmill L, et al. Evidence for abnormalities of cortical development in adolescent-onset schizophrenia. Neuroimage 2008, 43: 665–675.

    PubMed  Google Scholar 

  70. Narr KL, Bilder RM, Toga AW, Woods RP, Rex DE, Szeszko PR, et al. Mapping cortical thickness and gray matter concentration in first episode schizophrenia. Cereb Cortex 2005, 15: 708–719.

    PubMed  Google Scholar 

  71. Harasty J, Seldon HL, Chan P, Halliday G, Harding A. The left human speech-processing cortex is thinner but longer than the right. Laterality 2003, 8: 247–260.

    PubMed  CAS  Google Scholar 

  72. Kim GW, Kim YH, Jeong GW. Whole brain volume changes and its correlation with clinical symptom severity in patients with schizophrenia: a DARTEL-based VBM study. PLoS One 2017, 12: e0177251.

    PubMed  PubMed Central  Google Scholar 

  73. Bassitt DP, Neto MR, de Castro CC, Busatto GF. Insight and regional brain volumes in schizophrenia. Eur Arch Psychiatry Clin Neurosci 2007, 257: 58–62.

    PubMed  Google Scholar 

  74. Xia Y, Lv D, Liang Y, Zhang H, Pei K, Shao R, et al. Abnormal brain structure and function in first-episode childhood- and adolescence-onset Schizophrenia: association with clinical symptoms. Neurosci Bull 2019, 35: 522–526.

    PubMed  PubMed Central  Google Scholar 

  75. Winterburn JL, Voineskos AN, Devenyi GA, Plitman E, de la Fuente-Sandoval C, Bhagwat N, et al. Can we accurately classify schizophrenia patients from healthy controls using magnetic resonance imaging and machine learning? A multi-method and multi-dataset study. Schizophr Res 2019,214:3–10.

    PubMed  Google Scholar 

  76. Nieuwenhuis M, van Haren NE, Hulshoff Pol HE, Cahn W, Kahn RS, Schnack HG. Classification of schizophrenia patients and healthy controls from structural MRI scans in two large independent samples. Neuroimage 2012, 61: 606–612.

    PubMed  Google Scholar 

  77. Ota M, Sato N, Ishikawa M, Hori H, Sasayama D, Hattori K, et al. Discrimination of female schizophrenia patients from healthy women using multiple structural brain measures obtained with voxel-based morphometry. Psychiatry Clin Neurosci 2012, 66: 611–617.

    PubMed  Google Scholar 

  78. Nakamura K, Kawasaki Y, Suzuki M, Hagino H, Kurokawa K, Takahashi T, et al. Multiple structural brain measures obtained by three-dimensional magnetic resonance imaging to distinguish between schizophrenia patients and normal subjects. Schizophr Bull 2004, 30: 393–404.

    PubMed  Google Scholar 

  79. Yoon U, Lee JM, Im K, Shin YW, Cho BH, Kim IY, et al. Pattern classification using principal components of cortical thickness and its discriminative pattern in schizophrenia. Neuroimage 2007, 34: 1405–1415.

    PubMed  Google Scholar 

  80. Guo S, Palaniyappan L, Liddle PF, Feng J. Dynamic cerebral reorganization in the pathophysiology of schizophrenia: a MRI-derived cortical thickness study. Psychol Med 2016, 46: 2201–2214.

    PubMed  CAS  Google Scholar 

  81. Liu Y, Zhang Y, Lv L, Wu R, Zhao J, Guo W. Abnormal neural activity as a potential biomarker for drug-naive first-episode adolescent-onset schizophrenia with coherence regional homogeneity and support vector machine analyses. Schizophr Res 2018, 192: 408–415.

    Google Scholar 

  82. Qureshi MNI, Oh J, Cho D, Jo HJ, Lee B. Multimodal discrimination of schizophrenia using hybrid weighted feature concatenation of brain functional connectivity and anatomical features with an extreme learning machine. Front Neuroinform 2017, 11: 59.

    PubMed  PubMed Central  Google Scholar 

  83. Iwabuchi SJ, Liddle PF, Palaniyappan L. Clinical utility of machine-learning approaches in schizophrenia: improving diagnostic confidence for translational neuroimaging. Front Psychiatry 2013, 4: 95.

    PubMed  PubMed Central  Google Scholar 

  84. Davatzikos C, Shen D, Gur RC, Wu X, Liu D, Fan Y, et al. Whole-brain morphometric study of schizophrenia revealing a spatially complex set of focal abnormalities. Arch Gen Psychiatry 2005, 62: 1218–1227.

    PubMed  Google Scholar 

  85. Fan Y, Shen D, Gur RC, Gur RE, Davatzikos C. COMPARE: classification of morphological patterns using adaptive regional elements. IEEE Trans Med Imaging 2007, 26: 93–105.

    PubMed  Google Scholar 

  86. Vyskovsky R, Schwarz D, Kasparek T. Brain morphometry methods for feature extraction in random subspace ensemble neural network classification of first-episode Schizophrenia. Neural Comput 2019, 31: 897–918.

    PubMed  Google Scholar 

  87. Salvador R, Radua J, Canales-Rodriguez EJ, Solanes A, Sarro S, Goikolea JM, et al. Evaluation of machine learning algorithms and structural features for optimal MRI-based diagnostic prediction in psychosis. PLoS One 2017, 12: e0175683.

    PubMed  PubMed Central  Google Scholar 

  88. Zhao C, Zhu J, Liu X, Pu C, Lai Y, Chen L, et al. Structural and functional brain abnormalities in schizophrenia: a cross-sectional study at different stages of the disease. Prog Neuropsychopharmacol Biol Psychiatry 2018,83:27–32.

    PubMed  Google Scholar 

  89. Mennigen E, Jiang W, Calhoun VD, van Erp TGM, Agartz I, Ford JM, et al. Positive and general psychopathology associated with specific gray matter reductions in inferior temporal regions in patients with schizophrenia. Schizophr Res 2019, 208: 242–249.

    PubMed  PubMed Central  Google Scholar 

  90. Abdullayev A, Baskak B, Sedes Baskak N, Kir Y, Kale E, Devrimci Ozguven H, et al. Prefrontal cortex activity during facial affect processing in Schizophrenia: association with clinical symptoms and social cognitive functions. Turk Psikiyatri Derg 2018, 29: 229–237.

    PubMed  Google Scholar 

  91. Bopp MHA, Zollner R, Jansen A, Dietsche B, Krug A, Kircher TTJ. White matter integrity and symptom dimensions of schizophrenia: a diffusion tensor imaging study. Schizophr Res 2017, 184: 59–68.

    PubMed  Google Scholar 

  92. Joyal CC, Laakso MP, Tiihonen J, Syvalahti E, Vilkman H, Laakso A, et al. The amygdala and schizophrenia: a volumetric magnetic resonance imaging study in first-episode, neuroleptic-naive patients. Biol Psychiatry 2003, 54: 1302–1304.

    PubMed  Google Scholar 

  93. Zhuo C, Zhu J, Qin W, Qu H, Ma X, Tian H, et al. Functional connectivity density alterations in schizophrenia. Front Behav Neurosci 2014, 8: 404.

    PubMed  PubMed Central  Google Scholar 

  94. Kaleda VG, Bozjko OV, Akhadov TA, Tomyshev AS, Tikhonov DV, Lebedeva IS, et al. Neuroanatomical brain profile of juvenile shiftlike schizophrenia: morphometry of grey matter in the prefrontal cortex and subcortical structures. Zh Nevrol Psikhiatr Im S S Korsakova 2019, 119: 7–11.

    PubMed  CAS  Google Scholar 

  95. Gupta CN, Calhoun VD, Rachakonda S, Chen J, Patel V, Liu J, et al. Patterns of gray matter abnormalities in schizophrenia based on an international mega-analysis. Schizophr Bull 2015, 41: 1133–1142.

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2017YFC0909201 and 2018YFC1314300), the National Natural Science Foundation of China (81571659, 81971694, 81971599, 81771818, 81425013, and 81871052), and the Tianjin Key Technology R&D Program (17ZXMFSY00090).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng Liang.

Ethics declarations

Conflict of interest

The authors claim that there are no conflicts of interest.

Additional information

Wasana Ediri Arachchi and Yanmin Peng have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 769 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ediri Arachchi, W., Peng, Y., Zhang, X. et al. A Systematic Characterization of Structural Brain Changes in Schizophrenia. Neurosci. Bull. 36, 1107–1122 (2020). https://doi.org/10.1007/s12264-020-00520-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-020-00520-8

Keywords

Navigation