Skip to main content

Advertisement

Log in

Intervention Effect of Repetitive TMS on Behavioral Adjustment After Error Commission in Long-Term Methamphetamine Addicts: Evidence From a Two-Choice Oddball Task

  • Original Article
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Behavioral adjustment plays an important role in the treatment and relapse of drug addiction. Nonetheless, few studies have examined behavioral adjustment and its plasticity following error commission in methamphetamine (METH) dependence, which is detrimental to human health. Thus, we investigated the behavioral adjustment performance following error commission in long-term METH addicts and how it varied with the application of repetitive transcranial magnetic stimulation (rTMS) of the left dorsolateral prefrontal cortex (DLPFC). Twenty-nine male long-term METH addicts (for > 3 years) were randomly assigned to high-frequency (10 Hz, n = 15) or sham (n = 14) rTMS of the left DLPFC during a two-choice oddball task. Twenty-six age-matched, healthy male adults participated in the two-choice oddball task pretest to establish normal performance for comparison. The results showed that 10 Hz rTMS over the left DLPFC significantly decreased the post-error slowing effect in response times of METH addicts. In addition, the 10 Hz rTMS intervention remarkably reduced the reaction times during post-error trials but not post-correct trials. While the 10 Hz rTMS group showed a more pronounced post-error slowing effect than the healthy participants during the pretest, the post-error slowing effect in the posttest of this sample was similar to that in the healthy participants. These results suggest that high-frequency rTMS over the left DLPFC is a useful protocol for the improvement of behavioral adjustment after error commission in long-term METH addicts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gentry WB, Rüedi-Bettschen D, Owens SM. Development of active and passive human vaccines to treat methamphetamine addiction. Hum Vaccin 2009, 5: 206–213.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Volkow ND, Chang L, Wang GJ, Fowler JS, Franceschi D, Sedler M, et al. Loss of dopamine tranporters in methamphetamine abusers recovers with protracted abstinence. J Neurosci 2001, 21(23):9414–9418.

    Article  PubMed  CAS  Google Scholar 

  3. John Fantuzzo RB, Paul McDermottJohn Fantuzzo, Rebecca Bulotsky, Paul McDermott. A multivariate analysis of emotional and behavioral adjustment and preschool educational outcomes. School Psych Rev 2003, 32: 185–203.

  4. Salo R, Ursu S, Buonocore MH, Leamon MH, Carter C. Impaired prefrontal cortical function and disrupted adaptive cognitive control in methamphetamine abusers: a functional magnetic resonance imaging study. Biol Psychiatry 2009, 65: 706–709.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Hajcak G, McDonald N, Simons RF. To err is autonomic: Error–related brain potentials, ANS activity, and post-error compensatory behavior. Psychophysiol 2003, 40: 895–903.

    Article  Google Scholar 

  6. Danielmeier C, Ullsperger M. Post-error adjustments. Front Psychol 2011, 2: 233.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ridderinkhof KR, Ullsperger M, Crone EA, Nieuwenhuis S. The role of the medial frontal cortex in cognitive control. Science 2004, 306: 443–447.

    Article  PubMed  CAS  Google Scholar 

  8. King JA, Korb FM, von Cramon DY, Ullsperger M. Post-error behavioral adjustments are facilitated by activation and suppression of task-relevant and task-irrelevant information processing. J Neurosci 2010, 30: 12759–12769.

    Article  PubMed  CAS  Google Scholar 

  9. Schroder HS, Moser JS. Improving the study of error monitoring with consideration of behavioral performance measures. Front Hum Neurosci 2014, 8: 178.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Purcell BA, Kiani R. Neural Mechanisms of Post-error Adjustments of Decision Policy in Parietal Cortex. Neuron 2016, 89: 658–671.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Posner MI, Rothbart MK, Vizueta N, Levy KN, Evans DE, Thomas KM, et al. Attentional mechanisms of borderline personality disorder. Proc Natl Acad Sci U S A 2002, 99: 16366–16370.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Saunders KE, Goodwin GM, Rogers RD. Borderline personality disorder, but not euthymic bipolar I disorder, is associated with prolonged post-error slowing in sensorimotor performance. J Affect Disord 2016, 198: 163–170.

    Article  PubMed  Google Scholar 

  13. Paris J. Borderline personality disorder. CMAJ 2005, 172: 1579–1583.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Swann AC, Lijffijt M, Lane SD, Steinberg JL, Moeller FG. Increased trait-like impulsivity and course of illness in bipolar disorder. Bipolar Disord 2009, 11: 280–288.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Minzenberg MJ, Poole JH, Vinogradov S. A neurocognitive model of borderline personality disorder: effects of childhood sexual abuse and relationship to adult social attachment disturbance. Dev Psychopathol 2008, 20: 341–368.

    Article  PubMed  Google Scholar 

  16. Meyer JS. 3,4-methylenedioxymethamphetamine (MDMA): current perspectives. Subst Abuse Rehabil 2013, 4: 83–99.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Greene SL, Kerr F, Braitberg G. Review article: amphetamines and related drugs of abuse. Emerg Med Australas 2008, 20: 391–402.

    Article  PubMed  Google Scholar 

  18. Abidin SZ, Leong JW, Mahmoudi M, Nordin N, Abdullah S, Cheah PS, et al. In Silico Prediction and Validation of Gfap as an miR–3099 Target in Mouse Brain. Neurosci Bull 2017, 33: 373–382.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Paulus MP, Hozack NE, Zauscher BE, Frank L, Brown GG, Braff DL, et al. Behavioral and Functional Neuroimaging Evidence for Prefrontal Dysfunction in Methamphetamine-Dependent Subjects. Neuropsychopharmacology 2002, 26: 53–63.

    Article  PubMed  CAS  Google Scholar 

  20. Bellamoli E, Manganotti P, Schwartz RP, Rimondo C, Gomma M, Serpelloni G. rTMS in the treatment of drug addiction: an update about human studies. Behav Neurol 2014, 2014: 815215.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Yang LZ, Yang Z, Zhang X. Non–invasive brain stimulation for the treatment of nicotine addiction: potential and challenges. Neurosci Bull 2016, 32: 550–556.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Amengual JL, Marco-Pallares J, Richter L, Oung S, Schweikard A, Mohammadi B, et al. Tracking post-error adaptation in the motor system by transcranial magnetic stimulation. Neuroscience 2013, 250: 342–351.

    Article  PubMed  CAS  Google Scholar 

  23. Rossini PM, Rossi S. Transcranial magnetic stimulation: diagnostic, therapeutic, and research potential. Neurology 2007, 68: 484–488.

    Article  PubMed  Google Scholar 

  24. Stern WM, Tormos JM, Press DZ, Pearlman C, Pascual-Leone A. Antidepressant effects of high and low frequency repetitive transcranial magnetic stimulation to the dorsolateral prefrontal cortex: a double–blind, randomized, placebo–controlled trial. J Neuropsychiatry Clin Neurosci 2007, 19: 179–186.

  25. Shen Y, Cao X, Tan T, Shan C, Wang Y, Pan J, et al. 10-Hz Repetitive transcranial magnetic stimulation of the left dorsolateral prefrontal cortex reduces heroin cue craving in long-term addicts. Biol Psychiatry 2016, 80: e13–14.

    Article  PubMed  Google Scholar 

  26. Politi E, Fauci E, Santoro A, Smeraldi E. Daily sessions of transcranial magnetic stimulation to the left prefrontal cortex gradually reduce cocaine craving. Am J Addict 2008, 17: 345–346.

    Article  PubMed  Google Scholar 

  27. Cieslik EC, Zilles K, Caspers S, Roski C, Kellermann TS, Jakobs O, et al. Is there “one” DLPFC in cognitive action control? Evidence for heterogeneity from co-activation-based parcellation. Cereb Cortex 2013, 23: 2677–2689.

    Article  PubMed  Google Scholar 

  28. Li X, Hartwell KJ, Owens M, Lematty T, Borckardt JJ, Hanlon CA, et al. Repetitive transcranial magnetic stimulation of the dorsolateral prefrontal cortex reduces nicotine cue craving. Biol Psychiatry 2013, 73: 714–720.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Yuan J, Xu S, Li C, Yang J, Li H, Yuan Y, et al. The enhanced processing of visual novel events in females: ERP correlates from two modified three-stimulus oddball tasks. Brain Res 2012, 1437: 77–88.

    Article  PubMed  CAS  Google Scholar 

  30. Dutilh G, van Ravenzwaaij D, Nieuwenhuis S, van der Maas HLJ, Forstmann BU, Wagenmakers E-J. How to measure post-error slowing: A confound and a simple solution. J Math Psychol 2012, 56: 208–216.

    Article  Google Scholar 

  31. Yuan J, He Y, Qinglin Z, Chen A, Li H. Gender differences in behavioral inhibitory control: ERP evidence from a two-choice oddball task. Psychophysiol 2008, 45: 986–993.

    Article  Google Scholar 

  32. Pascual-Leone A, Rubio B, Pallardó F, Catalá MD. Rapid-rate transcranial magnetic stimulation of left dorsolateral prefrontal cortex in drug–resistant depression. Lancet 1996, 348: 233–237.

    Article  PubMed  CAS  Google Scholar 

  33. Yuan J, Meng X, Yang J, Yao G, Hu L, Yuan H. The valence strength of unpleasant emotion modulates brain processing of behavioral inhibitory control: neural correlates. Biol Psychol 2012, 89: 240–251.

    Article  PubMed  Google Scholar 

  34. Darke S, Kaye S, McKetin R, Duflou J. Major physical and psychological harms of methamphetamine use. Drug Alcohol Rev 2008, 27: 253–262.

    Article  PubMed  Google Scholar 

  35. Gentry WB, Ruedi-Bettschen D, Owens SM. Anti-(+)-methamphetamine monoclonal antibody antagonists designed to prevent the progression of human diseases of addiction. Clin Pharmacol Ther 2010, 88: 390–393.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Watterson LR, Kufahl PR, Nemirovsky NE, Sewalia K, Hood LE, Olive MF. Attenuation of reinstatement of methamphetamine-, sucrose-, and food-seeking behavior in rats by fenobam, a metabotropic glutamate receptor 5 negative allosteric modulator. Psychopharmacology (Berl) 2013, 225: 151–159.

    Article  CAS  Google Scholar 

  37. Sinha R. The clinical neurobiology of drug craving. Curr Opin Neurobiol 2013, 23: 649–654.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Potenza MN, Hong KI, Lacadie CM, Fulbright RK, Tuit KL, Sinha R. Neural correlates of stress-induced and cue-induced drug craving: influences of sex and cocaine dependence. Am J Psychiatry 2012, 169: 406–414.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Xue YX, Luo YX, Wu P, Shi HS, Xue LF, Chen C, et al. A memory retrieval-extinction procedure to prevent drug craving and relapse. Science 2012, 336: 241–245.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Schütz CG. High dose stimulant substitution for the treatment of cocaine and crystal meth use disorders. J Addict Res Ther 2015, 6. e131. https://doi.org/10.4172/2155-6105.1000e131.

  41. Wagner M, Rihs TA, Mosimann UP, Fisch HU, Schlaepfer TE. Repetitive transcranial magnetic stimulation of the dorsolateral prefrontal cortex affects divided attention immediately after cessation of stimulation. J Psychiatr Res 2006, 40: 315–321.

    Article  PubMed  Google Scholar 

  42. Li CS, Huang C, Yan P, Paliwal P, Constable RT, Sinha R. Neural correlates of post–error slowing during a stop signal task: a functional magnetic resonance imaging study. J Cogn Neurosci 2008, 20: 1021–1029.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Josep Marco-Pallares EC. Neural mechanisms underlying adaptive actions after slips. J Cogn Neurosci 2008, 20:9, 1595–1610.

    Article  PubMed  Google Scholar 

  44. Gehring WJ, Fencsik DE. Functions of the medial frontal cortex in the processing of conflict and errors. J Neurosci 2001, 21, 9430–9437.

  45. Notebaert W, Houtman F, Opstal FV, Gevers W, Fias W, Verguts T. Post-error slowing: an orienting account. Cognition 2009, 111: 275–279.

    Article  PubMed  Google Scholar 

  46. Gehring WJ, Goss B, Coles MGH, Meyer DE, Donchin E. A neural system for error detection and compensation. Psychol Sci 1993, 4: 385–390.

    Article  Google Scholar 

  47. Holroyd CB, Yeung N, Coles MG, Cohen JD. A mechanism for error detection in speeded response time tasks. J Exp Psychol Gen 2005, 134: 163–191.

    Article  PubMed  Google Scholar 

  48. Laming D. Choice reaction performance following an error. Acta Psychol 1979, 43: 199–224.

    Article  Google Scholar 

  49. Nunez Castellar E, Kuhn S, Fias W, Notebaert W. Outcome expectancy and not accuracy determines posterror slowing: ERP support. Cogn Affect Behav Neurosci 2010, 10: 270–278.

    Article  PubMed  Google Scholar 

  50. Friedman D, Cycowicz YM, Gaeta H. The novelty P3: an event-related brain potential (ERP) sign of the brain’s evaluation of novelty. Neurosci Biobehav Rev 2001, 25: 355–373.

    Article  PubMed  CAS  Google Scholar 

  51. Murphy PR vMM, Nieuwenhuis S. The pupillary orienting response predicts adaptive behavioral adjustment after errors. PLoS One 2016, 11: e0151763.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Carp J, Compton RJ. Alpha power is influenced by performance errors. Psychophysiol 2009, 46: 336–343.

    Article  Google Scholar 

  53. Keck M WT, Muller M, Erhardt A, Ohl F, Toschi N. Repetitive transcranial magnetic stimulation increases the release of dopamine in the mesolimbic and mesostriatal system. Neutopharmacol 2002, 43: 101.

    Article  CAS  Google Scholar 

  54. Strafella AP PT, Barrett J, Dagher A. Repetitive transcranial magnetic stimulation of the human prefrontal cortex induces dopamine release in the caudate nucleus. J Neurosci 2001, 21:RC157, 1–4.

    Google Scholar 

  55. Dalley JW, Everitt BJ, Robbins TW. Impulsivity, compulsivity, and top–down cognitive control. Neuron 2011, 69: 680–694.

    Article  PubMed  CAS  Google Scholar 

  56. D’Esposito M. From cognitive to neural models of working memory. Philos Trans R Soc Lond B Biol Sci 2007, 362: 761–772.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Salomon L, Lanteri C, Glowinski J, Tassin JP. Behavioral sensitization to amphetamine results from an uncoupling between noradrenergic and serotonergic neurons. Proc Natl Acad Sci U S A 2006, 103: 7476–7481.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Hartwell KJ, Johnson KA, Li X, Myrick H, LeMatty T, George MS, et al. Neural correlates of craving and resisting craving for tobacco in nicotine dependent smokers. Addict Biol 2011, 16: 654–666.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31371042, 31400906 and 31600886), and the Key Program of the Higher Education Institutions of Henan Province, China (17AJ90002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiajin Yuan.

Ethics declarations

Conflict of Interests

The authors declare no conflicts of interest regarding this work.

Ethical Standards

The authors assert that all procedures contributing to this work complied with the ethical standards of the relevant national and institutional committees on human experimentation and with the Helsinki Declaration of 1975, as revised in 2008.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Q., Lin, J., Yang, J. et al. Intervention Effect of Repetitive TMS on Behavioral Adjustment After Error Commission in Long-Term Methamphetamine Addicts: Evidence From a Two-Choice Oddball Task. Neurosci. Bull. 34, 449–456 (2018). https://doi.org/10.1007/s12264-018-0205-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-018-0205-y

Keywords

Navigation