Skip to main content
Log in

Endogenous level of TIGAR in brain is associated with vulnerability of neurons to ischemic injury

  • Original Article
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

In previous studies, we showed that TP53-induced glycolysis and apoptosis regulator (TIGAR) protects neurons against ischemic brain injury. In the present study, we investigated the developmental changes of TIGAR level in mouse brain and the correlation of TIGAR expression with the vulnerability of neurons to ischemic injury. We found that the TIGAR level was high in the embryonic stage, dropped at birth, partially recovered in the early postnatal period, and then continued to decline to a lower level in early adult and aged mice. The TIGAR expression was higher after ischemia/reperfusion in mouse brain 8 and 12 weeks after birth. Four-week-old mice had smaller infarct volumes, lower neurological scores, and lower mortality rates after ischemia than 8- and 12-week-old mice. TIGAR expression also increased in response to oxygen glucose deprivation (OGD)/reoxygenation insult or H2O2 treatment in cultured primary neurons from different embryonic stages (E16 and E20). The neurons cultured from the early embryonic period had a greater resistance to OGD and oxidative insult. Higher TIGAR levels correlated with higher pentose phosphate pathway activity and less oxidative stress. Older mice and more mature neurons had more severe DNA and mitochondrial damage than younger mice and less mature neurons in response to ischemia/reperfusion or OGD/reoxygenation insult. Supplementation of cultured neurons with nicotinamide adenine dinuclectide phosphate (NADPH) significantly reduced ischemic injury. These results suggest that TIGAR expression changes during development and its expression level may be correlated with the vulnerability of neurons to ischemic injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Lui VW, Wong EY, Ho K, Ng PK, Lau CP, Tsui SK, et al. Inhibition of c-Met downregulates TIGAR expression and reduces NADPH production leading to cell death. Oncogene 2011, 30: 1127–1134.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Crack PJ, Taylor JM. Reactive oxygen species and the modulation of stroke. Free Radic Biol Med 2005, 38: 1433–1444.

    Article  CAS  PubMed  Google Scholar 

  3. Niizuma K, Endo H, Chan PH. Oxidative stress and mitochondrial dysfunction as determinants of ischemic neuronal death and survival. J Neurochem 2009, 109 Suppl 1: 133–138.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Shakil H, Saleem S. Genetic deletion of prostacyclin IP receptor exacerbates transient global cerebral ischemia in aging mice. Brain Sci 2013, 3: 1095–1108.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Sheldon RA, Jiang X, Francisco C, Christen S, Vexler ZS, Tauber MG, et al. Manipulation of antioxidant pathways in neonatal murine brain. Pediatr Res 2004, 56: 656–662.

    Article  CAS  PubMed  Google Scholar 

  6. Kratzer I, Chip S, Vexler ZS. Barrier mechanisms in neonatal stroke. Front Neurosci 2014, 8: 359.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Bentsen L, Christensen L, Christensen A, Christensen H. Outcome and risk factors presented in old patients above 80 years of age versus younger patients after ischemic stroke. J Stroke Cerebrovasc Dis 2014, 23: 1944–1948.

    Article  PubMed  Google Scholar 

  8. Balaban RS, Nemoto S, Finkel T. Mitochondria, oxidants, and aging. Cell 2005, 120: 483–495.

    Article  CAS  PubMed  Google Scholar 

  9. Chistiakov DA, Sobenin IA, Revin VV, Orekhov AN, Bobryshev YV. Mitochondrial aging and age-related dysfunction of mitochondria. Biomed Res Int 2014, 2014: 238463.

    PubMed Central  PubMed  Google Scholar 

  10. Vajapey R, Rini D, Walston J, Abadir P. The impact of age-related dysregulation of the angiotensin system on mitochondrial redox balance. Front Physiol 2014, 5: 439.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Korzick DH, Lancaster TS. Age-related differences in cardiac ischemia-reperfusion injury: effects of estrogen deficiency. Pflugers Arch 2013, 465: 669–685.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Trocha M, Merwid-Lad A, Chlebda-Sieragowska E, Szuba A, Piesniewska M, Fereniec-Golebiewska L, et al. Age-related changes in ADMA-DDAH-NO pathway in rat liver subjected to partial ischemia followed by global reperfusion. Exp Gerontol 2014, 50: 45–51.

    Article  CAS  PubMed  Google Scholar 

  13. Bensaad K, Tsuruta A, Selak MA, Vidal MN, Nakano K, Bartrons R, et al. TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 2006, 126: 107–120.

    Article  CAS  PubMed  Google Scholar 

  14. Okar D.A, Manzano A, Navarro-Sabate A, Riera L, Bartrons R, Lange AJ. PFK-2/FBPase-2: maker and breaker of the essential biofactor fructose-2,6-bisphosphate. Trends Biochem Sci 2001, 26: 30–35.

    Article  CAS  PubMed  Google Scholar 

  15. Li M, Sun M, Cao L, Gu JH, Ge J, Chen J, et al. A TIGARregulated metabolic pathway is critical for protection of brain ischemia. J Neurosci 2014, 34: 7458–7471.

    Article  CAS  PubMed  Google Scholar 

  16. Ghosh D, Levault KR, Brewer GJ. Relative importance of redox buffers GSH and NAD(P)H in age-related neurodegeneration and Alzheimer disease-like mouse neurons. Aging Cell 2014, 13: 631–640.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Clark WM, Lessov NS, Dixon MP, Eckenstein F. Monofilament intraluminal middle cerebral artery occlusion in the mouse. Neurol Res 1997, 19: 641–648.

    CAS  PubMed  Google Scholar 

  18. Longa EZ, Weinstein PR, Carlson S, Cummins R. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 1989, 20: 84–91.

    Article  CAS  PubMed  Google Scholar 

  19. Sheng R, Zhang LS, Han R, Liu XQ, Gao B, Qin ZH. Autophagy activation is associated with neuroprotection in a rat model of focal cerebral ischemic preconditioning. Autophagy 2010, 6: 482–494.

    Article  CAS  PubMed  Google Scholar 

  20. Yonekura I, Takai K, Asai A, Kawahara N, Kirino T. p53 potentiates hippocampal neuronal death caused by global ischemia. J Cereb Blood Flow Metab 2006, 26: 1332–1340.

    Article  CAS  PubMed  Google Scholar 

  21. Tamatani M, Matsuyama T, Yamaguchi A, Mitsuda N, Tsukamoto Y, Taniguchi M, et al. ORP150 protects against hypoxia/ischemia-induced neuronal death. Nat Med 2001, 7: 317–323.

    Article  CAS  PubMed  Google Scholar 

  22. Singh NP, McCoy MT, Tice RR, Schneider EL. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 1988, 175: 184–191.

    Article  CAS  PubMed  Google Scholar 

  23. Garg TK, Chang JY. 15-deoxy-delta 12, 14-Prostaglandin J2 prevents reactive oxygen species generation and mitochondrial membrane depolarization induced by oxidative stress. BMC Pharmacol 2004, 4: 6.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Sinha S, Ghildiyal R, Mehta VS, Sen E. ATM-NFkappaB axis-driven TIGAR regulates sensitivity of glioma cells to radiomimetics in the presence of TNFalpha. Cell Death Dis 2013, 4: e615.

  25. Gupta S, Yel L, Kim D, Kim C, Chiplunkar S, Gollapudi S. Arsenic trioxide induces apoptosis in peripheral blood T lymphocyte subsets by inducing oxidative stress: a role of Bcl-2. Mol Cancer Ther 2003, 2: 711–719.

    Article  CAS  PubMed  Google Scholar 

  26. Kumar S, Yedjou CG, Tchounwou PB. Arsenic trioxide induces oxidative stress, DNA damage, and mitochondrial pathway of apoptosis in human leukemia (HL-60) cells. J Exp Clin Cancer Res 2014, 33: 42.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Sugawara T, Fujimura M, Morita-Fujimura Y, Kawase M, Chan PH. Mitochondrial release of cytochrome c corresponds to the selective vulnerability of hippocampal CA1 neurons in rats after transient global cerebral ischemia. J Neurosci 1999, 19: RC39.

  28. Menezes FP, Kist LW, Bogo MR, Bonan CD, Da Silva RS. Evaluation of age-dependent response to NMDA receptor antagonism in zebrafish. Zebrafish 2015, 12: 137–143.

    Article  CAS  PubMed  Google Scholar 

  29. Thompson JW, Narayanan SV, Koronowski KB, Morris-Blanco K, Dave KR, Perez-Pinzon MA. Signaling pathways leading to ischemic mitochondrial neuroprotection. J Bioenerg Biomembr 2015, 47: 101–110.

    Article  CAS  PubMed  Google Scholar 

  30. Cekanaviciute E, Fathali N, Doyle KP, Williams AM, Han J, Buckwalter MS. Astrocytic transforming growth factor-beta signaling reduces subacute neuroinflammation after stroke in mice. Glia 2014, 62: 1227–1240.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Quillinan N, Grewal H, Deng G, Shimizu K, Yonchek JC, Strnad F, et al. Region-specific role for GluN2B-containing NMDA receptors in injury to Purkinje cells and CA1 neurons following global cerebral ischemia. Neuroscience 2015, 284: 555–565.

    Article  CAS  PubMed  Google Scholar 

  32. Celso Constantino L, Tasca CI, Boeck CR. The role of NMDA receptors in the development of brain resistance through preand postconditioning. Aging Dis 2014, 5: 430–441.

    Google Scholar 

  33. Martensson J, Lai JC, Meister A. High-affinity transport of glutathione is part of a multicomponent system essential for mitochondrial function. Proc Natl Acad Sci U S A 1990, 87: 7185–7189.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Griffith OW, Meister A. Origin and turnover of mitochondrial glutathione. Proc Natl Acad Sci U S A 1985, 82: 4668–4672.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Gupte SA, Arshad M, Viola S, Kaminski PM, Ungvari Z, Rabbani G, et al. Pentose phosphate pathway coordinates multiple redox-controlled relaxing mechanisms in bovine coronary arteries. Am J Physiol Heart Circ Physiol 2003, 285: H2316–2326.

    Article  CAS  PubMed  Google Scholar 

  36. Gupte SA, Rupawalla T, Phillibert D Jr, Wolin MS. NADPH and heme redox modulate pulmonary artery relaxation and guanylate cyclase activation by NO. Am J Physiol 1999, 277: L1124–1132.

    CAS  PubMed  Google Scholar 

  37. Vanoverschelde JL, Janier MF, Bakke JE, Marshall DR, Bergmann SR. Rate of glycolysis during ischemia determines extent of ischemic injury and functional recovery after reperfusion. Am J Physiol 1994, 267: H1785–1794.

    CAS  PubMed  Google Scholar 

  38. Almeida A, Moncada S, Bolanos JP. Nitric oxide switches on glycolysis through the AMP protein kinase and 6-phosphofructo-2-kinase pathway. Nat Cell Biol 2004, 6: 45–51.

    Article  CAS  PubMed  Google Scholar 

  39. Chan PH. Oxygen radicals in focal cerebral ischemia. Brain Pathol 1994, 4: 59–65.

    Article  CAS  PubMed  Google Scholar 

  40. Chan PH. Reactive oxygen radicals in signaling and damage in the ischemic brain. J Cereb Blood Flow Metab 2001, 21: 2–14.

    Article  CAS  PubMed  Google Scholar 

  41. Andreyev AY, Kushnareva YE, Starkov AA. Mitochondrial metabolism of reactive oxygen species. Biochemistry (Mosc) 2005, 70: 200–214.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng-Hong Qin.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, L., Chen, J., Li, M. et al. Endogenous level of TIGAR in brain is associated with vulnerability of neurons to ischemic injury. Neurosci. Bull. 31, 527–540 (2015). https://doi.org/10.1007/s12264-015-1538-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-015-1538-4

Keywords

Navigation