Skip to main content

Advertisement

Log in

Paradoxical reduction of cerebral blood flow after acetazolamide loading: a hemodynamic and metabolic study with 15O PET

  • Original Article
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Paradoxical reduction of cerebral blood flow (CBF) after administration of the vasodilator acetazolamide is the most severe stage of cerebrovascular reactivity failure and is often associated with an increased oxygen extraction fraction (OEF). In this study, we aimed to reveal the mechanism underlying this phenomenon by focusing on the ratio of CBF to cerebral blood volume (CBV) as a marker of regional cerebral perfusion pressure (CPP). In 37 patients with unilateral internal carotid or middle cerebral arterial (MCA) steno-occlusive disease and 8 normal controls, the baseline CBF (CBFb), CBV, OEF, cerebral oxygen metabolic rate (CMRO2), and CBF after acetazolamide loading in the anterior and posterior MCA territories were measured by 15O positron emission tomography. Paradoxical CBF reduction was found in 28 of 74 regions (18 of 37 patients) in the ipsilateral hemisphere. High CBFb (>47.6 mL/100 mL/min, n = 7) was associated with normal CBFb/CBV, increased CBV, decreased OEF, and normal CMRO2. Low CBFb (<31.8 mL/100 mL/min, n = 9) was associated with decreased CBFb/CBV, increased CBV, increased OEF, and decreased CMRO2. These findings demonstrated that paradoxical CBF reduction is not always associated with reduction of CPP, but partly includes high-CBFb regions with normal CPP, which has not been described in previous studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Symon L. Experimental evidence for “intracerebral steal” following CO2 inhalation. Scand J Clin Lab Invest Suppl 1968, 102: XIII:A.

    PubMed  CAS  Google Scholar 

  2. Symon L, Pasztor E, Branston NM. The distribution and density of reduced cerebral blood fl ow following acute middle cerebral artery occlusion: an experimental study by the technique of hydrogen clearance in baboons. Stroke 1974, 5: 355–364.

    Article  PubMed  CAS  Google Scholar 

  3. Regli F, Yamaguchi T, Waltz AG. Effects of acetazolamide on cerebral ischemia and infarction after experimental occlusion of middle cerebral artery. Stroke 1971, 2: 456–460.

    Article  PubMed  CAS  Google Scholar 

  4. Vorstrup S, Henriksen L, Paulson OB. Effect of acetazolamide on cerebral blood fl ow and cerebral metabolic rate for oxygen. J Clin Invest 1984, 74: 1634–1639.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Vorstrup S, Brun B, Lassen NA. Evaluation of the cerebral vasodilatory capacity by the acetazolamide test before EC-IC bypass surgery in patients with occlusion of the internal carotid artery. Stroke 1986, 17: 1291–1298.

    Article  PubMed  CAS  Google Scholar 

  6. Vorstrup S. Tomographic cerebral blood flow measurements in patients with ischemic cerebrovascular disease and evaluation of the vasodilatory capacity by the acetazolamide test. Acta Neurol Scand Suppl 1988, 114: 1–48.

    PubMed  CAS  Google Scholar 

  7. Kuwabara Y, Ichiya Y, Sasaki M, Yoshida T, Masuda K. Time dependency of the acetazolamide effect on cerebral hemodynamics in patients with chronic occlusive cerebral arteries. Early steal phenomenon demonstrated by [15O]H2O positron emission tomography. Stroke 1995, 26: 1825–1829.

    CAS  Google Scholar 

  8. Okazawa H, Yamauchi H, Toyoda H, Sugimoto K, Fujibayashi Y, Yonekura Y. Relationship between vasodilatation and cerebral blood flow increase in impaired hemodynamics: a PET study with the acetazolamide test in cerebrovascular disease. J Nucl Med 2003, 44: 1875–1883.

    PubMed  Google Scholar 

  9. Baron JC, Bousser MG, Rey A, Guillard A, Comar D, Castaigne P. Reversal of focal “misery-perfusion syndrome” by extra-intracranial arterial bypass in hemodynamic cerebral ischemia. A case study with 15O positron emission tomography. Stroke 1981, 12: 454–459.

    CAS  Google Scholar 

  10. Gibbs JM, Wise RJ, Leenders KL, Jones T. Evaluation of cerebral perfusion reserve in patients with carotid-artery occlusion. Lancet 1984, 1: 310–314.

    Article  PubMed  CAS  Google Scholar 

  11. Sette G, Baron JC, Mazoyer B, Levasseur M, Pappata S, Crouzel C. Local brain haemodynamics and oxygen metabolism in cerebrovascular disease. Positron emission tomography. Brain 1989, 112(Pt 4): 931–951.

    Google Scholar 

  12. Schumann P, Touzani O, Young AR, Morello R, Baron JC, MacKenzie ET. Evaluation of the ratio of cerebral blood fl ow to cerebral blood volume as an index of local cerebral perfusion pressure. Brain 1998, 121(Pt 7): 1369–1379.

    Article  PubMed  Google Scholar 

  13. North American Symptomatic Carotid Endarterectomy Trial Collaborators. Beneficial effect of carotid endarterectomy in symptomatic patients with high-grade carotid stenosis. N Engl J Med 1991, 325: 445–453.

    Article  Google Scholar 

  14. Matsumoto K, Kitamura K, Mizuta T, Tanaka K, Yamamoto S, Sakamoto S, et al. Performance characteristics of a new 3-dimensional continuous-emission and spiral-transmission high-sensitivity and high-resolution PET camera evaluated with the NEMA NU 2-2001 standard. J Nucl Med 2006, 47: 83–90.

    PubMed  Google Scholar 

  15. Ibaraki M, Miura S, Shimosegawa E, Sugawara S, Mizuta T, Ishikawa A, et al. Quantification of cerebral blood flow and oxygen metabolism with 3-dimensional PET and 15O: validation by comparison with 2-dimensional PET. J Nucl Med 2008, 49: 50–59.

    Article  PubMed  Google Scholar 

  16. Mintun MA, Raichle ME, Martin WR, Herscovitch P. Brain oxygen utilization measured with O-15 radiotracers and positron emission tomography. J Nucl Med 1984, 25: 177–187.

    PubMed  CAS  Google Scholar 

  17. Herscovitch P, Markham J, Raichle ME. Brain blood flow measured with intravenous H2(15)O. I. Theory and error analysis. J Nucl Med 1983, 24: 782–789.

    PubMed  CAS  Google Scholar 

  18. Iida H, Jones T, Miura S. Modeling approach to eliminate the need to separate arterial plasma in oxygen-15 inhalation positron emission tomography. J Nucl Med 1993, 34: 1333–1340.

    PubMed  CAS  Google Scholar 

  19. Hatazawa J, Fujita H, Kanno I, Satoh T, Iida H, Miura S, et al. Regional cerebral blood flow, blood volume, oxygen extraction fraction, and oxygen utilization rate in normal volunteers measured by the autoradiographic technique and the single breath inhalation method. Ann Nucl Med 1995, 9: 15–21.

    Article  PubMed  CAS  Google Scholar 

  20. Lammertsma AA, Jones T. Correction for the presence of intravascular oxygen-15 in the steady-state technique for measuring regional oxygen extraction ratio in the brain: 1. Description of the method. J Cereb Blood Flow Metab 1983, 3: 416–424.

    Article  PubMed  CAS  Google Scholar 

  21. Kanno I, Iida H, Miura S, Murakami M, Takahashi K, Sasaki H, et al. A system for cerebral blood fl ow measurement using an H215O autoradiographic method and positron emission tomography. J Cereb Blood Flow Metab 1987, 7: 143–153.

    Article  PubMed  CAS  Google Scholar 

  22. Iida H, Kanno I, Miura S, Murakami M, Takahashi K, Uemura K. Error analysis of a quantitative cerebral blood flow measurement using H2(15)O autoradiography and positron emission tomography, with respect to the dispersion of the input function. J Cereb Blood Flow Metab 1986, 6: 536–545.

    Article  PubMed  CAS  Google Scholar 

  23. Kuroda S, Shiga T, Ishikawa T, Houkin K, Narita T, Katoh C, et al. Reduced blood flow and preserved vasoreactivity characterize oxygen hypometabolism due to incomplete infarction in occlusive carotid artery diseases. J Nucl Med 2004, 45: 943–949.

    PubMed  Google Scholar 

  24. Imaizumi M, Kitagawa K, Oku N, Hashikawa K, Takasawa M, Yoshikawa T, et al. Clinical significance of cerebrovascular reserve in acetazolamide challenge -comparison with acetazolamide challenge H2O-PET and Gas-PET. Ann Nucl Med 2004, 18: 369–374.

    Article  PubMed  Google Scholar 

  25. Isozaki M, Arai Y, Kudo T, Kiyono Y, Kobayashi M, Kubota T, et al. Clinical implication and prognosis of normal baseline cerebral blood fl ow with impaired vascular reserve in patients with major cerebral artery occlusive disease. Ann Nucl Med 2010, 24: 371–377.

    Article  PubMed  Google Scholar 

  26. Powers WJ. Cerebral hemodynamics in ischemic cerebrovascular disease. Ann Neurol 1991, 29: 231–240.

    Article  PubMed  CAS  Google Scholar 

  27. Lassen NA. The luxury-perfusion syndrome and its possible relation to acute metabolic acidosis localised within the brain. Lancet 1966, 2: 1113–1115.

    Article  PubMed  CAS  Google Scholar 

  28. Ackerman RH, Correia JA, Alpert NM, Baron JC, Gouliamos A, Grotta JC, et al. Positron imaging in ischemic stroke disease using compounds labeled with oxygen 15. Initial results of clinicophysiologic correlations. Arch Neurol 1981, 38: 537–543.

    Article  PubMed  CAS  Google Scholar 

  29. Wise RJ, Bernardi S, Frackowiak RS, Legg NJ, Jones T. Serial observations on the pathophysiology of acute stroke. The transition from ischaemia to infarction as reflected in regional oxygen extraction. Brain 1983, 106(Pt 1): 197–222.

    Article  PubMed  Google Scholar 

  30. Hakim AM. The cerebral ischemic penumbra. Can J Neurol Sci 1987, 14: 557–559.

    PubMed  CAS  Google Scholar 

  31. Torigai T, Mase M, Ohno T, Katano H, Nisikawa Y, Sakurai K, et al. Usefulness of dual and fully automated measurements of cerebral blood flow during balloon occlusion test of the internal carotid artery. J Stroke Cerebrovasc Dis 2011, 22 (3): 197–204.

    Google Scholar 

  32. Faraci FM, Heistad DD. Regulation of large cerebral arteries and cerebral microvascular pressure. Circ Res 1990, 66: 8–17.

    Article  PubMed  CAS  Google Scholar 

  33. Furst H, Hartl WH, Janssen I. Patterns of cerebrovascular reactivity in patients with unilateral asymptomatic carotid artery stenosis. Stroke 1994, 25: 1193–1200.

    Article  PubMed  CAS  Google Scholar 

  34. Omar NM, Marshall JM. Age-related changes in the sympathetic innervation of cerebral vessels and in carotid vascular responses to norepinephrine in the rat: in vitro and in vivo studies. J Appl Physiol 2010, 109: 314–322.

    Article  PubMed  CAS  Google Scholar 

  35. Derdeyn CP, Videen TO, Yundt KD, Fritsch SM, Carpenter DA, Grubb RL, et al. Variability of cerebral blood volume and oxygen extraction: stages of cerebral haemodynamic impairment revisited. Brain 2002, 125: 595–607.

    Article  PubMed  Google Scholar 

  36. Kuroda S, Shiga T, Houkin K, Ishikawa T, Katoh C, Tamaki N, et al. Cerebral oxygen metabolism and neuronal integrity in patients with impaired vasoreactivity attributable to occlusive carotid artery disease. Stroke 2006, 37: 393–398.

    Article  PubMed  CAS  Google Scholar 

  37. Yamauchi H, Nishii R, Higashi T, Kagawa S, Fukuyama H. Silent cortical neuronal damage in atherosclerotic disease of the major cerebral arteries. J Cereb Blood Flow Metab 2011, 31: 953–961.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  38. Samson Y, Baron JC, Bousser MG, Rey A, Derlon JM, David P, et al. Effects of extra-intracranial arterial bypass on cerebral blood flow and oxygen metabolism in humans. Stroke 1985, 16: 609–616.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadashi Watabe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Watabe, T., Shimosegawa, E., Kato, H. et al. Paradoxical reduction of cerebral blood flow after acetazolamide loading: a hemodynamic and metabolic study with 15O PET. Neurosci. Bull. 30, 845–856 (2014). https://doi.org/10.1007/s12264-013-1459-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-013-1459-z

Keywords

Navigation