Skip to main content
Log in

Sevoflurane exposure in 7-day-old rats affects neurogenesis, neurodegeneration and neurocognitive function

  • Original Article
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Objective

Sevoflurane is widely used in pediatric anesthesia and former studies showed that it causes neurodegeneration in the developing brain. The present study was carried out to investigate the effects of sevoflurane on neurogenesis, neurodegeneration and behavior.

Methods

We administered 5-bromodeoxyuridine, an S-phase marker, before, during, and after 4 h of sevoflurane given to rats on postnatal day 7 to assess dentate gyrus progenitor proliferation and Fluoro-Jade staining for degeneration. Spatial reference memory was tested 2 and 6 weeks after anesthesia.

Results

Sevo-flurane decreased progenitor proliferation and increased cell death until at least 4 days after anesthesia. Spatial reference memory was not affected at 2 weeks but was affected at 6 weeks after sevoflurane administration.

Conclusion

Sevoflurane reduces neurogenesis and increases the death of progenitor cells in developing brain. This might mediate the late-onset neurocognitive outcome after sevoflurane application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wise-Faberowski L, Zhang H, Ing R, Pearlstein RD, Warner DS. Isoflurane-induced neuronal degeneration: an evaluation in organotypic hippocampal slice cultures. Anesth Analg 2005, 101: 651–657.

    Article  PubMed  CAS  Google Scholar 

  2. Young C, Jevtovic-Todorovic V, Qin YQ, Tenkova T, Wang H, Labruyere J, et al. Potential of ketamine and midazolam, individually or in combination, to induce apoptotic neurodegeneration in the infant mouse brain. Br J Pharmacol 2005, 146: 189–197.

    Article  PubMed  CAS  Google Scholar 

  3. Olney JW, Ishimaru MJ, Bittigau P, Ikonomidou C. Ethanolinduced apoptotic neurodegeneration in the developing brain. Apoptosis 2000, 5: 515–521.

    Article  PubMed  CAS  Google Scholar 

  4. Fredriksson A, Ponten E, Gordh T, Eriksson P. Neonatal exposure to a combination of N-methyl-D-aspartate and gamma-aminobutyric acid type A receptor anesthetic agents potentiates apoptotic neurodegeneration and persistent behavioral deficits. Anesthesiology 2007, 107: 427–436.

    Article  PubMed  CAS  Google Scholar 

  5. Jevtovic-Todorovic V, Hartman RE, Izumi Y, Benshoff ND, Dikranian K, Zorumski CF, et al. Early exposure to common anesthetic agents causes widespread neurodegeneration in the developing rat brain and persistent learning deficits. J Neurosci 2003, 23: 876–882.

    PubMed  CAS  Google Scholar 

  6. Honegger P, Matthieu JM. Selective toxicity of the general anesthetic propofol for GABAergic neurons in rat brain cell cultures. J Neurosci Res 1996, 45: 631–636.

    Article  PubMed  CAS  Google Scholar 

  7. Spahr-Schopfer I, Vutskits L, Toni N, Buchs PA, Parisi L, Muller D. Differential neurotoxic effects of propofol on dissociated cortical cells and organotypic hippocampal cultures. Anesthesiology 2000, 92: 1408–1417.

    Article  PubMed  CAS  Google Scholar 

  8. Vutskits L, Gascon E, Tassonyi E, Kiss JZ. Clinically relevant concentrations of propofol but not midazolam alter in vitro dendritic development of isolated gamma-aminobutyric acid-positive interneurons. Anesthesiology 2005, 102: 970–976.

    Article  PubMed  CAS  Google Scholar 

  9. Bayer SA, Altman J, Russo RJ, Zhang X. Timetables of neurogenesis in the human brain based on experimentally determined patterns in the rat. Neurotoxicology 1993, 14: 83–144.

    PubMed  CAS  Google Scholar 

  10. Dobbing J, Sands J. Comparative aspects of the brain growth spurt. Early Hum Dev 1979, 3: 79–83.

    Article  PubMed  CAS  Google Scholar 

  11. Olney JW, Tenkova T, Dikranian K, Qin YQ, Labruyere J, Ikonomidou C. Ethanol-induced apoptotic neurodegeneration in the developing C57BL/6 mouse brain. Brain Res Dev Brain Res 2002, 133: 115–126.

    Article  PubMed  CAS  Google Scholar 

  12. Rice D, Barone S Jr. Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environ Health Perspect 2000, 108 (Suppl 3): 511–533.

    PubMed  Google Scholar 

  13. Stratmann G, Sall JW, May LD, Bell JS, Magnusson KR, Rau V, et al. Isoflurane differentially affects neurogenesis and long-term neurocognitive function in 60-day-old and 7-day-old rats. Anesthesiology 2009, 110: 834–848.

    Article  PubMed  CAS  Google Scholar 

  14. Satomoto M, Satoh Y, Terui K, Miyao H, Takishima K, Ito M, et al. Neonatal exposure to sevoflurane induces abnormal social behaviors and deficits in fear conditioning in mice. Anesthesiology 2009, 110: 628–637.

    Article  PubMed  CAS  Google Scholar 

  15. Altman J, Bayer SA. Migration and distribution of two populations of hippocampal granule cell precursors during the perinatal and postnatal periods. J Comp Neurol 1990, 301: 365–381.

    Article  PubMed  CAS  Google Scholar 

  16. Madsen TM, Kristjansen PE, Bolwig TG, Wortwein G. Arrested neuronal proliferation and impaired hippocampal function following fractionated brain irradiation in the adult rat. Neuroscience 2003, 119: 635–642.

    Article  PubMed  CAS  Google Scholar 

  17. Rola R, Raber J, Rizk A, Otsuka S, VandenBerg SR, Morhardt DR, et al. Radiation-induced impairment of hippocampal neurogenesis is associated with cognitive deficits in young mice. Exp Neurol 2004, 188: 316–330.

    Article  PubMed  CAS  Google Scholar 

  18. Lerman J, Sikich N, Kleinman S, Yentis S. The pharmacology of sevoflurane in infants and children. Anesthesiology 1994, 80: 814–824.

    Article  PubMed  CAS  Google Scholar 

  19. Bercker S, Bert B, Bittigau P, Felderhoff-Muser U, Buhrer C, Ikonomidou C, et al. Neurodegeneration in newborn rats following propofol and sevoflurane anesthesia. Neurotox Res 2009, 16: 140–147.

    Article  PubMed  CAS  Google Scholar 

  20. Bian M, Yu M, Yang S, Gao H, Huang Y, Deng C, et al. Expression of Cbl-interacting protein of 85 kDa in MPTP mouse model of Parkinson’s disease and 1-methyl-4-phenyl-pyridinium ion-treated dopaminergic SH-SY5Y cells. Acta Biochim Biophys Sin (Shanghai) 2008, 40: 505–5

    Article  PubMed  CAS  Google Scholar 

  21. Kawakami Y, Yoshida K, Yang JH, Suzuki T, Azuma N, Sakai K, et al. Impaired neurogenesis in embryonic spinal cord of Phgdh knockout mice, a serine deficiency disorder model. Neurosci Res 2009, 63: 184–193.

    Article  PubMed  CAS  Google Scholar 

  22. Livak KJ, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 2001, 25: 402–408.

    Article  PubMed  CAS  Google Scholar 

  23. Xie Z, Culley DJ, Dong Y, Zhang G, Zhang B, Moir RD, et al. The common inhalation anesthetic isoflurane induces caspase activation and increases amyloid beta-protein level in vivo. Ann Neurol 2008, 64: 618–627.

    Article  PubMed  CAS  Google Scholar 

  24. Schmued LC, Hopkins KJ. Fluoro-Jade B: a high affinity fluorescent marker for the localization of neuronal degeneration. Brain Res 2000, 874: 123–130.

    Article  PubMed  CAS  Google Scholar 

  25. Ye X, Carp RI, Schmued LC, Scallet AC. Fluoro-Jade and silver methods: application to the neuropathology of scrapie, a transmissible spongiform encephalopathy. Brain Res Brain Res Protoc 2001, 8: 104–112.

    Article  PubMed  CAS  Google Scholar 

  26. Schmued LC, Albertson C, Slikker W Jr. Fluoro-Jade: a novel fluorochrome for the sensitive and reliable histochemical localization of neuronal degeneration. Brain Res Brain Res Rev 1997, 751: 37–46.

    CAS  Google Scholar 

  27. Thornberry NA, Lazebnik Y. Caspases: enemies within. Science 1998, 281: 1312–1316.

    Article  PubMed  CAS  Google Scholar 

  28. Keith JR, Wu Y, Epp JR, Sutherland RJ. Fluoxetine and the dentate gyrus: memory, recovery of function, and electrophysiology. Behav Pharmacol 2007, 18: 521–531.

    Article  PubMed  CAS  Google Scholar 

  29. Scholzen T, Gerdes J. The Ki-67 protein: from the known and the unknown. J Cell Physiol 2000, 182: 311–322.

    Article  PubMed  CAS  Google Scholar 

  30. Cameron HA, McKay RD. Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus. J Comp Neurol 2001, 435: 406–417.

    Article  PubMed  CAS  Google Scholar 

  31. Kee N, Teixeira CM, Wang AH, Frankland PW. Preferential incorporation of adult-generated granule cells into spatial memory networks in the dentate gyrus. Nat Neurosci 2007, 10: 355–362.

    Article  PubMed  CAS  Google Scholar 

  32. Kempermann G, Wiskott L, Gage FH. Functional significance of adult neurogenesis. Curr Opin Neurobiol 2004, 14: 186–191.

    Article  PubMed  CAS  Google Scholar 

  33. Ikonomidou C, Bittigau P, Ishimaru MJ, Wozniak DF, Koch C, Genz K, et al. Ethanol-induced apoptotic neurodegeneration and fetal alcohol syndrome. Science 2000, 287: 1056–1060.

    Article  PubMed  CAS  Google Scholar 

  34. Ikonomidou C, Bittigau P, Koch C, Genz K, Hoerster F, Felderhoff-Mueser U, et al. Neurotransmitters and apoptosis in the developing brain. Biochem Pharmacol 2001, 62: 401–405.

    Article  PubMed  CAS  Google Scholar 

  35. Ikonomidou C, Bosch F, Miksa M, Bittigau P, Vockler J, Dikranian K, et al. Blockade of NMDA receptors and apoptotic neurodegeneration in the developing brain. Science 1999, 283: 70–74.

    Article  PubMed  CAS  Google Scholar 

  36. Ishimaru MJ, Ikonomidou C, Tenkova TI, Der TC, Dikranian K, Sesma MA, et al. Distinguishing excitotoxic from apoptotic neurodegeneration in the developing rat brain. J Comp Neurol 1999, 408: 461–476.

    Article  PubMed  CAS  Google Scholar 

  37. Sall JW, Stratmann G, Leong J, McKleroy W, Mason D, Shenoy S, et al. Isoflurane inhibits growth but does not cause cell death in hippocampal neural precursor cells grown in culture. Anesthesiology 2009, 110: 826–833.

    Article  PubMed  CAS  Google Scholar 

  38. D’Hooge R, De Deyn PP. Applications of the Morris water maze in the study of learning and memory. Brain Res Brain Res Rev 2001, 36: 60–90.

    Article  PubMed  Google Scholar 

  39. Kempermann G, Kuhn HG, Gage FH. More hippocampal neurons in adult mice living in an enriched environment. Nature 1997, 386: 493–495.

    Article  PubMed  CAS  Google Scholar 

  40. Gould E, Tanapat P, McEwen BS, Flugge G, Fuchs E. Proliferation of granule cell precursors in the dentate gyrus of adult monkeys is diminished by stress. Proc Natl Acad Sci U S A 1998, 95: 3168–3171.

    Article  PubMed  CAS  Google Scholar 

  41. Zhu C, Gao J, Karlsson N, Li Q, Zhang Y, Huang Z, et al. Isoflurane anesthesia induced persistent, progressive memory impairment, caused a loss of neural stem cells, and reduced neurogenesis in young, but not adult, rodents. J Cereb Blood Flow Metab 2010, 30: 1017–1030.

    Article  PubMed  CAS  Google Scholar 

  42. Dupret D, Revest JM, Koehl M, Ichas F, De Giorgi F, Costet P, et al. Spatial relational memory requires hippocampal adult neurogenesis. PLoS One 2008, 3: e1959.

    Article  PubMed  Google Scholar 

  43. Shors TJ, Miesegaes G, Beylin A, Zhao M, Rydel T, Gould E. Neurogenesis in the adult is involved in the formation of trace memories. Nature 2001, 410: 372–376.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Cang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fang, F., Xue, Z. & Cang, J. Sevoflurane exposure in 7-day-old rats affects neurogenesis, neurodegeneration and neurocognitive function. Neurosci. Bull. 28, 499–508 (2012). https://doi.org/10.1007/s12264-012-1260-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-012-1260-4

Keywords

Navigation