Skip to main content
Log in

Endophilin isoforms have distinct characteristics in interactions with N-type Ca2+ channels and dynamin I

  • Original Article
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Objective

Formation of the endophilin II-Ca2+ channel complex is Ca2+-dependent in clathrin-mediated endocytosis. However, little is known about whether the other two endophilin isoforms have the same features. The present study aimed to investigate the characteristics of the interactions of all three isoforms with Ca2+ channels and dynamin I.

Methods

N-type Ca2+ channel C-terminal fragments (NCFs) synthesized with a 3H-leucine-labeled kit, were incubated with endophilin-GST fusion proteins, followed by pull-down assay. Results were counted on a scintillation counter. In addition, the different endophilin isoforms were each co-transfected with dynamin I into 293T cells, followed by flow cytometry and co-immunoprecipitation assay. Immunostaining was performed and an image analysis program was used to evaluate the overlap coefficient of cells expressing endophilin and dynamin I.

Results

All three isoforms interacted with NCF. Endophilins I and II demonstrated clear Ca2+-dependent interactions with NCF, whereas endophilin III did not. Co-immunoprecipitation showed that, compared to endophilin I/II, the interaction between endophilin III and dynamin I was significantly increased. Similar results were obtained from flow cytometry. Furthermore, endophilin III had a higher overlap coefficient with dynamin I in co-transfected 293T cells.

Conclusion

Endophilin isoforms have distinct characteristics in interactions with NCF and dynamin I. Endophilin III binding to NCF is Ca2+-independent, implying that it plays a different role in clathrin-mediated endocytosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Giachino C, Lantelme E, Lanzetti L, Saccone S, Bella Valle G, Migone N. A novel SH3-containing human gene family preferentially expressed in the central nervous system. Genomics 1997, 41: 427–434.

    Article  PubMed  CAS  Google Scholar 

  2. Ringstad N, Nemoto Y, De Camilli P. The SH3p4/Sh3p8/SH3p13 protein family: binding partners for synaptojanin and dynamin via a Grb2-like Src homology 3 domain. Proc Natl Acad Sci U S A 1997, 94: 8569–8574.

    Article  PubMed  CAS  Google Scholar 

  3. Reutens AT, Begley CG. Endophilin-1: a multifunctional protein. Int J Biochem Cell Biol 2002, 34: 1173–1177.

    Article  PubMed  CAS  Google Scholar 

  4. Gortat A, Jouve San-Roman M, Vannier C, Schmidt AA. Single point mutation in the bin/amphiphysin/RVS (BAR) sequence of endophilin impairs dimerization, membrane shaping, and SRC homology 3 domain-mediated partnership. J Biol Chem 2012, 287(6): 4232–4247.

    Article  PubMed  CAS  Google Scholar 

  5. Pawson T. Protein modules and signalling networks. Nature 1995, 373: 573–580.

    Article  PubMed  CAS  Google Scholar 

  6. Ringstad N, Nemoto Y, De Camilli P. Differential expression of endophilin 1 and 2 dimers at central nervous system synapses. J Biol Chem 2001, 276: 40424–40430.

    Article  PubMed  CAS  Google Scholar 

  7. Ross JA, Chen Y, Muller J, Barylko B, Wang L, Banks HB, et al. Dimeric endophilin A2 stimulates assembly and GTPase activity of dynamin 2. Biophys J 2011, 100: 729–737.

    Article  PubMed  CAS  Google Scholar 

  8. Simpson F, Hussain NK, Qualmann B, Kelly RB, Kay BK, McPherson PS, et al. SH3-domain-containing proteins function at distinct steps in clathrin-coated vesicle formation. Nat Cell Biol 1999, 1: 119–124.

    Article  PubMed  CAS  Google Scholar 

  9. Rikhy R, Kumar V, Mittal R, Krishnan KS. Endophilin is critically required for synapse formation and function in Drosophila melanogaster. J Neurosci 2002, 22: 7478–7484.

    PubMed  CAS  Google Scholar 

  10. Schuske KR, Richmond JE, Matthies DS, Davis WS, Runz S, Rube DA, et al. Endophilin is required for synaptic vesicle endocytosis by localizing synaptojanin. Neuron 2003, 40: 749–762.

    Article  PubMed  CAS  Google Scholar 

  11. Hughes AC, Errington R, Fricker-Gates R, Jones L. Endophilin A3 forms filamentous structures that colocalise with microtubules but not with actin filaments. Brain Res Mol Brain Res 2004, 128: 182–192.

    Article  PubMed  CAS  Google Scholar 

  12. Ringstad N, Gad H, Low P, Di Paolo G, Brodin L, Shupliakov O, et al. Endophilin/SH3p4 is required for the transition from early to late stages in clathrin-mediated synaptic vesicle endocytosis. Neuron 1999, 24: 143–154.

    Article  PubMed  CAS  Google Scholar 

  13. Guichet A, Wucherpfennig T, Dudu V, Etter S, Wilsch-Brauniger M, Hellwig A, et al. Essential role of endophilin A in synaptic vesicle budding at the Drosophila neuromuscular junction. EMBO J 2002, 21: 1661–1672.

    Article  PubMed  CAS  Google Scholar 

  14. Mizuno N, Jao CC, Langen R, Steven AC. Multiple modes of endophilin-mediated conversion of lipid vesicles into coated tubes: implications for synaptic endocytosis. J Biol Chem 2010, 285: 23351–23358.

    Article  PubMed  CAS  Google Scholar 

  15. Gad H, Ringstad N, Low P, Kjaerulff O, Gustafsson J, Wenk M, et al. Fission and uncoating of synaptic clathrin-coated vesicles are perturbed by disruption of interactions with the SH3 domain of endophilin. Neuron 2000, 27: 301–312.

    Article  PubMed  CAS  Google Scholar 

  16. Verstreken P, Kjaerulff O, Lloyd TE, Atkinson R, Zhou Y, Meinertzhagen IA, et al. Endophilin mutations block clathrinmediated endocytosis but not neurotransmitter release. Cell 2002, 109: 101–112.

    Article  PubMed  CAS  Google Scholar 

  17. Micheva KD, Kay BK, McPherson PS. Synaptojanin forms two separate complexes in the nerve terminal. Interactions with endophilin and amphiphysin. J Biol Chem 1997, 272: 27239–27245.

    Article  PubMed  CAS  Google Scholar 

  18. Anggono V, Robinson PJ. Syndapin I and endophilin I bind overlapping proline-rich regions of dynamin I: role in synaptic vesicle endocytosis. J Neurochem 2007, 102: 931–943.

    Article  PubMed  CAS  Google Scholar 

  19. Verstreken P, Koh TW, Schulze KL, Zhai RG, Hiesinger PR, Zhou Y, et al. Synaptojanin is recruited by endophilin to promote synaptic vesicle uncoating. Neuron 2003, 40: 733–748.

    Article  PubMed  CAS  Google Scholar 

  20. Sundborger A, Soderblom C, Vorontsova O, Evergren E, Hinshaw JE, Shupliakov O. An endophilin-dynamin complex promotes budding of clathrin-coated vesicles during synaptic vesicle recycling. J Cell Sci 2011, 124: 133–143.

    Article  PubMed  CAS  Google Scholar 

  21. Lee SY, Wenk MR, Kim Y, Nairn AC, De Camilli P. Regulation of synaptojanin 1 by cyclin-dependent kinase 5 at synapses. Proc Natl Acad Sci U S A 2004, 101: 546–551.

    Article  PubMed  CAS  Google Scholar 

  22. McPherson PS, Garcia EP, Slepnev VI, David C, Zhang X, Grabs D, et al. A presynaptic inositol-5-phosphatase. Nature 1996, 379: 353–357.

    Article  PubMed  CAS  Google Scholar 

  23. Chen Y, Deng L, Maeno-Hikichi Y, Lai M, Chang S, Chen G, et al. Formation of an endophilin-Ca2+ channel complex is critical for clathrin-mediated synaptic vesicle endocytosis. Cell 2003, 115: 37–48.

    Article  PubMed  CAS  Google Scholar 

  24. Adler J, Parmryd I. Quantifying colocalization by correlation: the Pearson correlation coefficient is superior to the Mander’s overlap coefficient. Cytometry A 2010, 77: 733–742.

    PubMed  Google Scholar 

  25. Zinchuk V, Wu Y, Grossenbacher-Zinchuk O, Stefani E. Quantifying spatial correlations of fluorescent markers using enhanced background reduction with protein proximity index and correlation coefficient estimations. Nat Protoc 2011, 6: 1554–1567.

    Article  PubMed  CAS  Google Scholar 

  26. Chen-Hwang MC, Chen HR, Elzinga M, Hwang YW. Dynamin is a minibrain kinase/dual specificity Yak1-related kinase 1A substrate. J Biol Chem 2002, 277: 17597–17604.

    Article  PubMed  CAS  Google Scholar 

  27. Yoshida Y, Kinuta M, Abe T, Liang S, Araki K, Cremona O, et al. The stimulatory action of amphiphysin on dynamin function is dependent on lipid bilayer curvature. EMBO J 2004, 23: 3483–3491.

    Article  PubMed  CAS  Google Scholar 

  28. Hill E, van Der Kaay J, Downes CP, Smythe E. The role of dynamin and its binding partners in coated pit invagination and scission. J Cell Biol 2001, 152: 309–323.

    Article  PubMed  CAS  Google Scholar 

  29. Szaszak M, Gaborik Z, Turu G, McPherson PS, Clark AJ, Catt KJ, et al. Role of the proline-rich domain of dynamin-2 and its interactions with Src homology 3 domains during endocytosis of the AT1 angiotensin receptor. J Biol Chem 2002, 277: 21650–21656.

    Article  PubMed  CAS  Google Scholar 

  30. Aulestia FJ, Redondo PC, Rodriguez-Garcia A. Two distinct calcium pools in the endoplasmic reticulum of HEK-293T cells. Biochem J 2011, 435: 227–235.

    Article  PubMed  CAS  Google Scholar 

  31. Weissenhorn W. Crystal structure of the endophilin-A1 BAR domain. J Mol Biol 2005, 351: 653–661.

    Article  PubMed  CAS  Google Scholar 

  32. Chowdhury S. Arc/Arg3.1 interacts with the endocytic machinery to regulate AMPA receptor trafficking. Neuron 2006, 52: 445–459.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tian, Q., Zhang, JF., Fan, J. et al. Endophilin isoforms have distinct characteristics in interactions with N-type Ca2+ channels and dynamin I. Neurosci. Bull. 28, 483–492 (2012). https://doi.org/10.1007/s12264-012-1257-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-012-1257-z

Keywords

Navigation