Skip to main content

Advertisement

Log in

Recent developments in multivariate pattern analysis for functional MRI

  • Review
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Multivariate pattern analysis (MVPA) is a recently-developed approach for functional magnetic resonance imaging (fMRI) data analyses. Compared with the traditional univariate methods, MVPA is more sensitive to subtle changes in multivariate patterns in fMRI data. In this review, we introduce several significant advances in MVPA applications and summarize various combinations of algorithms and parameters in different problem settings. The limitations of MVPA and some critical questions that need to be addressed in future research are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Haxby JV, Gobbini MI, Furey ML, Ishai A, Schouten JL, Pietrini P. Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science 2001, 293: 2425–2430.

    Article  PubMed  CAS  Google Scholar 

  2. Haynes JD, Rees G. Decoding mental states from brain activity in humans. Nat Rev Neurosci 2006, 7: 523–534.

    Article  PubMed  CAS  Google Scholar 

  3. Kriegeskorte N, Goebel R, Bandettini P. Information-based functional brain mapping. Proc Natl Acad Sci U S A 2006, 103: 3863–3868.

    Article  PubMed  CAS  Google Scholar 

  4. O’Toole AJ, Jiang F, Abdi H, Penard N, Dunlop JP, Parent MA. Theoretical, statistical, and practical perspectives on pattern-based classification approaches to the analysis of functional neuroimaging data. J Cogn Neurosci 2007, 19: 1735–1752.

    Article  PubMed  Google Scholar 

  5. Haynes JD. Decoding and predicting intentions. Ann N Y Acad Sci 2011, 1224: 9–21.

    Article  PubMed  Google Scholar 

  6. Kriegeskorte N. Pattern-information analysis: from stimulus decoding to computational-model testing. Neuroimage 2011, 56: 411–421.

    Article  PubMed  Google Scholar 

  7. Cox DD, Savoy RL. Functional magnetic resonance imaging (fMRI) “brain reading”: detecting and classifying distributed patterns of fMRI activity in human visual cortex. Neuroimage 2003, 19: 261–270.

    Article  PubMed  Google Scholar 

  8. Bandettini PA. What’s new in neuroimaging methods? Ann N Y Acad Sci 2009, 1156: 260–293.

    Article  PubMed  Google Scholar 

  9. Mur M, Bandettini PA, Kriegeskorte N. Revealing representational content with pattern-information fMRI—an introductory guide. Soc Cogn Affect Neurosci 2009, 4: 101–109.

    Article  PubMed  Google Scholar 

  10. Kamitani Y, Tong F. Decoding the visual and subjective contents of the human brain. Nat Neurosci 2005, 8: 679–685.

    Article  PubMed  CAS  Google Scholar 

  11. Friston KJ. Modalities, modes, and models in functional neuroimaging. Science 2009, 326: 399–403.

    Article  PubMed  CAS  Google Scholar 

  12. Kravitz DJ, Kriegeskorte N, Baker CI. High-level visual object representations are constrained by position. Cereb Cortex 2010, 20: 2916–2925.

    Article  PubMed  Google Scholar 

  13. Mur M, Ruff DA, Bodurka J, Bandettini PA, Kriegeskorte N. Faceidentity change activation outside the face system: “release from adaptation” may not always indicate neuronal selectivity. Cereb Cortex 2010, 20: 2027–2042.

    Article  PubMed  Google Scholar 

  14. Chang KM, Mitchell T, Just MA. Quantitative modeling of the neural representation of objects: how semantic feature norms can account for fMRI activation. Neuroimage 2011, 56: 716–727.

    Article  PubMed  Google Scholar 

  15. Corradi-Dell’Acqua C, Hofstetter C, Vuilleumier P. Felt and seen pain evoke the same local patterns of cortical activity in insular and cingulate cortex. J Neurosci 2011, 31: 17996–18006.

    Article  PubMed  Google Scholar 

  16. Alink A, Euler F, Kriegeskorte N, Singer W, Kohler A. Auditory motion direction encoding in auditory cortex and high-level visual cortex. Hum Brain Mapp 2012, 33: 969–978.

    Article  PubMed  Google Scholar 

  17. Xu G, Jiang Y, Ma L, Yang Z, Weng X. Similar spatial patterns of neural coding of category selectivity in FFA and VWFA under different attention conditions. Neuropsychologia 2012, 50: 862–868.

    Article  PubMed  Google Scholar 

  18. Chadwick MJ, Hassabis D, Weiskopf N, Maguire EA. Decoding individual episodic memory traces in the human hippocampus. Curr Biol 2010, 20: 544–547.

    Article  PubMed  CAS  Google Scholar 

  19. Mayhew SD, Li S, Storrar JK, Tsvetanov KA, Kourtzi Z. Learning shapes the representation of visual categories in the aging human brain. J Cogn Neurosci 2010, 22: 2899–2912.

    Article  PubMed  Google Scholar 

  20. Schultz J. Brain imaging: decoding your memories. Curr Biol 2010, 20: R269–271.

    Article  PubMed  CAS  Google Scholar 

  21. Kahnt T, Heinzle J, Park SQ, Haynes JD. Decoding the formation of reward predictions across learning. J Neurosci 2011, 31: 14624–14630.

    Article  PubMed  CAS  Google Scholar 

  22. Herrmann B, Obleser J, Kalberlah C, Haynes JD, Friederici AD. Dissociable neural imprints of perception and grammar in auditory functional imaging. Hum Brain Mapp 2012, 33: 584–595.

    Article  PubMed  Google Scholar 

  23. Haynes JD, Sakai K, Rees G, Gilbert S, Frith C, Passingham RE. Reading hidden intentions in the human brain. Curr Biol 2007, 17: 323–328.

    Article  PubMed  CAS  Google Scholar 

  24. Soon CS, Brass M, Heinze HJ, Haynes JD. Unconscious determinants of free decisions in the human brain. Nat Neurosci 2008, 11: 543–545.

    Article  PubMed  CAS  Google Scholar 

  25. Bode S, He AH, Soon CS, Trampel R, Turner R, Haynes JD. Tracking the unconscious generation of free decisions using ultra-high field fMRI. PLoS One 2011, 6: e21612.

    Article  PubMed  CAS  Google Scholar 

  26. Kahnt T, Heinzle J, Park SQ, Haynes JD. Decoding different roles for vmPFC and dlPFC in multi-attribute decision making. Neuroimage 2011, 56: 709–715.

    Article  PubMed  Google Scholar 

  27. Ethofer T, Van De Ville D, Scherer K, Vuilleumier P. Decoding of emotional information in voice-sensitive cortices. Curr Biol 2009, 19: 1028–1033.

    Article  PubMed  CAS  Google Scholar 

  28. Lin D, Boyle MP, Dollar P, Lee H, Lein ES, Perona P, et al. Functional identification of an aggression locus in the mouse hypothalamus. Nature 2011, 470: 221–226.

    Article  PubMed  CAS  Google Scholar 

  29. Gomez A, Rothkirch M, Kaul C, Weygandt M, Haynes JD, Rees G, et al. Emotion modulates the effects of endogenous attention on retinotopic visual processing. Neuroimage 2011, 57: 1542–1551.

    Article  PubMed  Google Scholar 

  30. Kotz SA, Kalberlah C, Bahlmann J, Friederici AD, Haynes JD. Predicting vocal emotion expressions from the human brain. Hum Brain Mapp 2012. doi: 10.1002/hbm.22041.

  31. Engels AS, Heller W, Spielberg JM, Warren SL, Sutton BP, Banich MT, et al. Co-occurring anxiety influences patterns of brain activity in depression. Cogn Affect Behav Neurosci 2010, 10: 141–156.

    Article  PubMed  Google Scholar 

  32. Hamilton JP, Chen G, Thomason ME, Schwartz ME, Gotlib IH. Investigating neural primacy in major depressive disorder: multivariate Granger causality analysis of resting-state fMRI time-series data. Mol Psychiatry 2011, 16: 763–772.

    Article  PubMed  CAS  Google Scholar 

  33. Hoeft F, McCandliss BD, Black JM, Gantman A, Zakerani N, Hulme C, et al. Neural systems predicting long-term outcome in dyslexia. Proc Natl Acad Sci U S A 2011, 108: 361–366.

    Article  PubMed  CAS  Google Scholar 

  34. Pereira F, Mitchell T, Botvinick M. Machine learning classifiers and fMRI: a tutorial overview. Neuroimage 2009, 45: S199–209.

    Article  PubMed  Google Scholar 

  35. Hassabis D, Chu C, Rees G, Weiskopf N, Molyneux PD, Maguire EA. Decoding neuronal ensembles in the human hippocampus. Curr Biol 2009, 19: 546–554.

    Article  PubMed  CAS  Google Scholar 

  36. Kriegeskorte N, Simmons WK, Bellgowan PS, Baker CI. Circular analysis in systems neuroscience: the dangers of double dipping. Nat Neurosci 2009, 12: 535–540.

    Article  PubMed  CAS  Google Scholar 

  37. Dosenbach NU, Nardos B, Cohen AL, Fair DA, Power JD, Church JA, et al. Prediction of individual brain maturity using fMRI. Science 2010, 329: 1358–1361.

    Article  PubMed  CAS  Google Scholar 

  38. Craddock RC, Holtzheimer PE 3rd, Hu XP, Mayberg HS. Disease state prediction from resting state functional connectivity. Magn Reson Med 2009, 62: 1619–1628.

    Article  PubMed  Google Scholar 

  39. Shen H, Wang L, Liu Y, Hu D. Discriminative analysis of restingstate functional connectivity patterns of schizophrenia using low dimensional embedding of fMRI. Neuroimage 2010, 49: 3110–3121.

    Article  PubMed  Google Scholar 

  40. Fu CH, Mourao-Miranda J, Costafreda SG, Khanna A, Marquand AF, Williams SC, et al. Pattern classification of sad facial processing: toward the development of neurobiological markers in depression. Biol Psychiatry 2008, 63: 656–662.

    Article  PubMed  Google Scholar 

  41. Zeng LL, Shen H, Liu L, Wang LB, Li BJ, Fang P, et al. Identifying major depression using whole-brain functional connectivity: a multivariate pattern analysis. Brain 2012, 135: 1498–1507.

    Article  PubMed  Google Scholar 

  42. Oquendo MA, Baca-Garcia E, Artes-Rodriguez A, Perez-Cruz F, Galfalvy HC, Blasco-Fontecilla H, et al. Machine learning and data mining: strategies for hypothesis generation. Mol Psychiatry 2012 doi: 10.1038/mp.2011.173.

  43. Thirion B, Duchesnay E, Hubbard E, Dubois J, Poline JB, Lebihan D, et al. Inverse retinotopy: inferring the visual content of images from brain activation patterns. Neuroimage 2006, 33: 1104–1116.

    Article  PubMed  Google Scholar 

  44. Kay KN, Naselaris T, Prenger RJ, Gallant JL. Identifying natural images from human brain activity. Nature 2008, 452: 352–355.

    Article  PubMed  CAS  Google Scholar 

  45. Daugman JG. Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. J Opt Soc Am A 1985, 2: 1160–1169.

    Article  PubMed  CAS  Google Scholar 

  46. Jones JP, Palmer LA. An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex. J Neurophysiol 1987, 58: 1233–1258.

    PubMed  CAS  Google Scholar 

  47. Miyawaki Y, Uchida H, Yamashita O, Sato MA, Morito Y, Tanabe HC, et al. Visual image reconstruction from human brain activity using a combination of multiscale local image decoders. Neuron 2008, 60: 915–929.

    Article  PubMed  CAS  Google Scholar 

  48. Mitchell TM, Shinkareva SV, Carlson A, Chang KM, Malave VL, Mason RA, et al. Predicting human brain activity associated with the meanings of nouns. Science 2008, 320: 1191–1195.

    Article  PubMed  CAS  Google Scholar 

  49. Naselaris T, Prenger RJ, Kay KN, Oliver M, Gallant JL. Bayesian reconstruction of natural images from human brain activity. Neuron 2009, 63: 902–915.

    Article  PubMed  CAS  Google Scholar 

  50. Pereira F, Detre G, Botvinick M. Generating text from functional brain images. Front Hum Neurosci 2011, 5: 72.

    Article  PubMed  Google Scholar 

  51. Meyer K, Kaplan JT, Essex R, Webber C, Damasio H, Damasio A. Predicting visual stimuli on the basis of activity in auditory cortices. Nat Neurosci 2010, 13: 667–668.

    Article  PubMed  CAS  Google Scholar 

  52. Knops A, Thirion B, Hubbard EM, Michel V, Dehaene S. Recruitment of an area involved in eye movements during mental arithmetic. Science 2009, 324: 1583–1585.

    Article  PubMed  CAS  Google Scholar 

  53. Bai J, Shi J, Jiang Y, He S, Weng X. Chinese and Korean characters engage the same visual word form area in proficient early Chinese-Korean bilinguals. PLoS one 2011, 6: e22765.

    Article  PubMed  CAS  Google Scholar 

  54. Reddy L, Kanwisher N. Category selectivity in the ventral visual pathway confers robustness to clutter and diverted attention. Curr Biol 2007, 17: 2067–2072.

    Article  PubMed  CAS  Google Scholar 

  55. Kriegeskorte N, Bandettini P. Analyzing for information, not activation, to exploit high-resolution fMRI. Neuroimage 2007, 38: 649–662.

    Article  PubMed  Google Scholar 

  56. Kriegeskorte N, Bandettini P. Combining the tools: activation- and information-based fMRI analysis. Neuroimage 2007, 38: 666–668.

    Article  PubMed  Google Scholar 

  57. Friman O, Borga M, Lundberg P, Knutsson H. Detection of neural activity in fMRI using maximum correlation modeling. Neuroimage 2002, 15: 386–395.

    Article  PubMed  Google Scholar 

  58. Momennejad I, Haynes JD. Human anterior prefrontal cortex encodes the ‘what’ and ‘when’ of future intentions. Neuroimage 2012, 61: 139–148.

    Article  PubMed  Google Scholar 

  59. Bode S, Bogler C, Soon CS, Haynes JD. The neural encoding of guesses in the human brain. Neuroimage 2012, 59: 1924–1931.

    Article  PubMed  Google Scholar 

  60. Carlin JD, Rowe JB, Kriegeskorte N, Thompson R, Calder AJ. Direction-sensitive codes for observed head turns in human superior temporal sulcus. Cereb Cortex 2012, 22: 735–744.

    Article  PubMed  Google Scholar 

  61. Gilbert SJ. Decoding the content of delayed intentions. J Neurosci 2011, 31: 2888–2894.

    Article  PubMed  CAS  Google Scholar 

  62. Bogler C, Bode S, Haynes JD. Decoding successive computational stages of saliency processing. Curr Biol 2011, 21: 1667–1671.

    Article  PubMed  CAS  Google Scholar 

  63. Reverberi C, Gorgen K, Haynes JD. Compositionality of rule representations in human prefrontal cortex. Cereb Cortex 2012, 22: 1237–1246.

    Article  PubMed  Google Scholar 

  64. Weygandt M, Blecker CR, Schafer A, Hackmack K, Haynes JD, Vaitl D, et al. fMRI pattern recognition in obsessive-compulsive disorder. Neuroimage 2012, 60: 1186–1193.

    Article  PubMed  Google Scholar 

  65. Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage 2012, 59: 2142–2154.

    Article  PubMed  Google Scholar 

  66. Kriegeskorte N, Mur M, Bandettini P. Representational similarity analysis — connecting the branches of systems neuroscience. Front Syst Neurosci 2008, 2: 4.

    Article  PubMed  Google Scholar 

  67. Liu T, Hospadaruk L, Zhu DC, Gardner JL. Feature-specific attentional priority signals in human cortex. J Neurosci 2011, 31: 4484–4495.

    Article  PubMed  CAS  Google Scholar 

  68. Cichy RM, Heinzle J, Haynes JD. Imagery and perception share cortical representations of content and location. Cereb Cortex 2012, 22: 372–380.

    Article  PubMed  Google Scholar 

  69. Cichy RM, Sterzer P, Heinzle J, Elliott LT, Ramirez F, Haynes JD. Probing principles of large-scale object representation: Category preference and location encoding. Hum Brain Mapp 2012. doi: 10.1002/hbm.22020.

  70. Sun D, van Erp TG, Thompson PM, Bearden CE, Daley M, Kushan L, et al. Elucidating a magnetic resonance imaging-based neuroanatomic biomarker for psychosis: classification analysis using probabilistic brain atlas and machine learning algorithms. Biol Psychiatry 2009, 66: 1055–1060.

    Article  PubMed  Google Scholar 

  71. Koutsouleris N, Meisenzahl EM, Davatzikos C, Bottlender R, Frodl T, Scheuerecker J, et al. Use of neuroanatomical pattern classification to identify subjects in at-risk mental states of psychosis and predict disease transition. Arch Gen Psychiatry 2009, 66: 700–712.

    Article  PubMed  Google Scholar 

  72. Kamitani Y, Tong F. Decoding seen and attended motion directions from activity in the human visual cortex. Curr Biol 2006, 16: 1096–1102.

    Article  PubMed  CAS  Google Scholar 

  73. Freeman J, Brouwer GJ, Heeger DJ, Merriam EP. Orientation decoding depends on maps, not columns. J Neurosci 2011, 31: 4792–4804.

    Article  PubMed  CAS  Google Scholar 

  74. Poldrack RA. Can cognitive processes be inferred from neuroimaging data? Trends in cognitive sciences 2006, 10: 59–63.

    Article  PubMed  Google Scholar 

  75. Poldrack RA. Inferring mental states from neuroimaging data: from reverse inference to large-scale decoding. Neuron 2011, 72: 692–697.

    Article  PubMed  CAS  Google Scholar 

  76. Bartels A, Logothetis NK, Moutoussis K. fMRI and its interpretations: an illustration on directional selectivity in area V5/MT. Trends Neurosci 2008, 31: 444–453.

    Article  PubMed  CAS  Google Scholar 

  77. Logothetis NK. What we can do and what we cannot do with fMRI. Nature 2008, 453: 869–878.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Z., Fang, F. & Weng, X. Recent developments in multivariate pattern analysis for functional MRI. Neurosci. Bull. 28, 399–408 (2012). https://doi.org/10.1007/s12264-012-1253-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-012-1253-3

Keywords

Navigation