Skip to main content
Log in

Engineering Bacillus subtilis Cells as Factories: Enzyme Secretion and Value-added Chemical Production

  • Review Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Bacillus subtilis has been studied for more than half a century, ever since the dawn of molecular biology, as a representative Gram-positive bacterium and cell factory. Two characteristic capacities of B. subtilis, namely its natural competence for DNA uptake and high-level enzyme secretion, have been investigated and exploited intensively during these long years. As a consequence, this bacterium has evolved into an excellent platform for synthetic biological research and development. In this review, we outline basic concepts for B. subtilis cell factory engineering, and we describe several examples of its applications in the production of proteins and high-value metabolites. In particular, we highlight engineering approaches that can make the already very efficient Bacillus protein secretion pathways even more efficient for the production of enzymes and pharmaceutical proteins. We further showcase examples of metabolic engineering in B. subtilis based on synthetic biology principles to produce various high-value or health-promoting substances, especially inositol stereoisomers. We conclude that the versatile traits of B. subtilis, combined with multi-omics approaches and rapidly developing technologies for genome engineering and high-throughput screening enable us to modify and optimize this bacterium’s metabolic circuits to deliver compounds that are needed for a green and sustainable society as well as a healthy population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Perkins, J., M. Wyss, H. P. Hohmann, and U. Sauer (2009) Metabolic engineering of Bacillus subtilis. pp. 908–914. In: C. D. Smolke (ed.). The Metabolic Pathway Engineering Handbook: Fundamentals. CRC press, Boca Raton, FL, USA.

    Google Scholar 

  2. Sonenshein, A. L. (2007) Control of key metabolic intersections in Bacillus subtilis. Nat. Rev. Microbiol. 5: 917–927.

    Article  CAS  PubMed  Google Scholar 

  3. van Dijl, J. M. and M. Hecker (2013) Bacillus subtilis: from soil bacterium to super-secreting cell factory. Microb. Cell Fact. 12: 3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dubnau, D. (1991) Genetic competence in Bacillus subtilis. Microbiol. Rev. 55: 395–424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Higgins, D. and J. Dworkin (2012) Recent progress in Bacillus subtilis sporulation. FEMS Microbiol. Rev. 36: 131–148.

    Article  CAS  PubMed  Google Scholar 

  6. Westers, H., R. Dorenbos, J. M. van Dijl, J. Kabel, T. Flanagan, K. M. Devine, F. Jude, S. J. Seror, A. C. Beekman, E. Darmon, C. Eschevins, A. de Jong, S. Bron, O. P. Kuipers, A. M. Albertini, H. Antelmann, M. Hecker, N. Zamboni, U. Sauer, C. Bruand, D. S. Ehrlich, J. C. Alonso, M. Salas, and W. J. Quax (2003) Genome engineering reveals large dispensable regions in Bacillus subtilis. Mol. Biol. Evol. 20: 2076–2090.

    Article  CAS  PubMed  Google Scholar 

  7. Caspi, R., T. Altman, R. Billington, K. Dreher, H. Foerster, C. A. Fulcher, T. A. Holland, I. M. Keseler, A. Kothari, A. Kubo, M. Krummenacker, M. Latendresse, L. A. Mueller, Q. Ong, S. Paley, P. Subhraveti, D. S. Weaver, D. Weerasinghe, P. Zhang, and P. D. Karp (2014) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res. 42: D459–D471.

    Article  CAS  PubMed  Google Scholar 

  8. Michna, R. H., F. M. Commichau, D. Toedter, C. P. Zschiedrich, and J. Stuelke (2014) SubtiWiki-a database for the model organism Bacillus subtilis that links pathway, interaction and expression information. Nucleic Acids Res. 42: D692–D698.

    Article  CAS  PubMed  Google Scholar 

  9. Sierro, N., Y. Makita, M. de Hoon, and K. Nakai (2008) DBTBS: a database of transcriptional regulation in Bacillus subtilis containing upstream intergenic conservation information. Nucleic Acids Res. 36: D93–D96.

    Article  CAS  PubMed  Google Scholar 

  10. Pohl, S. and C. R. Harwood (2010) Heterologous protein secretion by Bacillus species from the cradle to the grave. Adv. Appl. Microbiol. 73: 1–25.

    Article  PubMed  CAS  Google Scholar 

  11. Liu, L., Y. Liu, H. D. Shin, R. R. Chen, N. S. Wang, J. Li, G. Du, and J. Chen (2013) Developing Bacillus spp. as a cell factory for production of microbial enzymes and industrially important biochemicals in the context of systems and synthetic biology. Appl. Microbiol. Biotechnol. 97: 6113–6127.

    Article  CAS  PubMed  Google Scholar 

  12. Tjalsma, H., H. Antelmann, J. D. H. Jongbloed, P. G. Braun, E. Darmon, R. Dorenbos, J. Y. F. Dubois, H. Westers, G. Zanen, W. J. Quax, O. P. Kuipers, S. Bron, M. Hecker, and J. M. van Dijl (2004) Proteomics of protein secretion by Bacillus subtilis: Separating the “secrets” of the secretome. Microbiol. Mol. Biol. Rev. 68: 207–233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Westers, L., H. Westers, and W. J. Quax (2004) Bacillus subtilis as cell factory for pharmaceutical proteins: a biotechnological approach to optimize the host organism. Biochim. Biophys. Acta. 1694: 299–310.

    Article  CAS  PubMed  Google Scholar 

  14. Jensen, C. L., K. Stephenson, S. T. Jorgensen, and C. Harwood (2000) Cell-associated degradation affects the yield of secreted engineered and heterologous proteins in the Bacillus subtilis expression system. Microbiology. 146: 2583–2594.

    Article  CAS  PubMed  Google Scholar 

  15. Harwood, C. R., J. M. Mouillon, S. Pohl, and J. Arnau (2018) Secondary metabolite production and the safety of industrially important members of the Bacillus subtilis group. FEMS Microbiol. Rev. 42: 721–738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hohmann, H. P., J. M. van Dijl, L. Krishnappa, and Z. Prágai (2016) Host organisms: Bacillus subtilis. pp. 221–298. In: C. Wittmann and J. C. Liao (eds). Industrial Biotechnology. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany.

    Chapter  Google Scholar 

  17. Bolhuis, A., C. P. Broekhuizen, A. Sorokin, M. L. Van Roosmalen, G. Venema, S. Bron, W. J. Quax, and J. M. van Dijl (1998) SecDF of Bacillus subtilis, a molecular siamese twin required for the efficient secretion of proteins. J. Biol. Chem. 273: 21217–21224.

    Article  CAS  PubMed  Google Scholar 

  18. Zimmer, J., Y. Nam, and T. A. Rapoport (2008) Structure of a complex of the ATPase SecA and the protein-translocation channel. Nature. 455: 936–943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Furukawa, A., K. Yoshikaie, T. Mori, H. Mori, Y. V. Morimoto, Y. Sugano, S. Iwaki, T. Minamino, Y. Sugita, Y. Tanaka, and T. Tsukazaki (2017) Tunnel formation inferred from the I-form structures of the proton-driven protein secretion motor SecDF. Cell Rep. 19: 895–901.

    Article  CAS  PubMed  Google Scholar 

  20. Bunai, K., H. Takamatsu, T. Horinaka, A. Oguro, K. Nakamura and K. Yamane (1996) Bacillus subtilis Ffh, a homologue of mammalian SRP54, can intrinsically bind to the precursors of secretory proteins. Biochem. Biophys. Res. Commun. 227: 762–767.

    Article  CAS  PubMed  Google Scholar 

  21. Nakamura, K., S. Yahagi, T. Yamazaki, and K. Yamane (1999) Bacillus subtilis histone-like protein, HBsu, is an integral component of a SRP-like particle that can bind the Alu domain of small cytoplasmic RNA. J. Biol. Chem. 274: 13569–13576.

    Article  CAS  PubMed  Google Scholar 

  22. Zanen, G., H. Antelmann, R. Meima, J. D. H. Jongbloed, M. Kolkman, M. Hecker, J. M. van Dijl, and W. J. Quax (2006) Proteomic dissection of potential signal recognition particle dependence in protein secretion by Bacillus subtilis. Proteomics. 6: 3636–3648.

    Article  CAS  PubMed  Google Scholar 

  23. Müller, J. P., J. Ozegowski, S. Vettermann, J. Swaving, K. H. Van Wely, and A. J. Driessen (2000) Interaction of Bacillus subtilis CsaA with SecA and precursor proteins. Biochem. J. 348: 367–373.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Moliere, N. and K. Turgay (2009) Chaperone-protease systems in regulation and protein quality control in Bacillus subtilis. Res. Microbiol. 160: 637–644.

    Article  CAS  PubMed  Google Scholar 

  25. Seydlová, G., P. Halada, R. Fišer, O. Toman, A. Ulrych, and J. Svobodová (2012) DnaK and GroEL chaperones are recruited to the Bacillus subtilis membrane after short-term ethanol stress. J. Appl. Microbiol. 112: 765–774.

    Article  PubMed  CAS  Google Scholar 

  26. Kontinen, V. P., P. Saris, and M. Sarvas (1991) A gene (prsA) of Bacillus subtilis involved in a novel, late stage of protein export. Mol. Microbiol. 5: 1273–1283.

    Article  CAS  PubMed  Google Scholar 

  27. Jacobs, M., J. B. Andersen, V. Kontinen, and M. Sarvas (1993) Bacillus subtilis PrsA is required in vivo as an extracytoplasmic chaperone for secretion of active enzymes synthesized either with or without pro-sequences. Mol. Microbiol. 8: 957–966.

    Article  CAS  PubMed  Google Scholar 

  28. Kontinen, V. P. and M. Sarvas (1993) The PrsA lipoprotein is essential for protein secretion in Bacillus subtilis and sets a limit for high-level secretion. Mol. Microbiol. 8: 727–737.

    Article  CAS  PubMed  Google Scholar 

  29. Vitikainen, M., I. Lappalainen, R. Seppala, H. Antelmann, H. Boer, S. Taira, H. Savilahti, M. Hecker, M. Vihinen, M. Sarvas, and V. P. Kontinen (2004) Structure-function analysis of PrsA reveals roles for the parvulin-like and flanking N- and C-terminal domains in protein folding and secretion in Bacillus subtilis. J. Biol. Chem. 279: 19302–19314.

    Article  CAS  PubMed  Google Scholar 

  30. Kouwen, T. R. H. M., A. van der Goot, R. Dorenbos, T. Winter, H. Antelmann, M. C. Plaisier, W. J. Quax, J. M. van Dijl, and J. Y. F. Dubois (2007) Thiol-disulphide oxidoreductase modules in the low-GC Gram-positive bacteria. Mol. Microbiol. 64: 984–999.

    Article  CAS  PubMed  Google Scholar 

  31. Kouwen, T. R. H. M., J. Y. F. Dubois, R. Freudl, W. J. Quax, and J. M. van Dijl (2008) Modulation of thiol-disulfide oxidoreductases for increased production of disulfide-bond-containing proteins in Bacillus subtilis. Appl. Environ. Microbiol. 74: 7536–7545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kouwen, T. R. and J. M. van Dijl (2009) Applications of thioldisulfide oxidoreductases for optimized in vivo production of functionally active proteins in Bacillus. Appl. Microbiol. Biotechnol. 85: 45–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tjalsma, H., A. Bolhuis, J. D. H. Jongbloed, S. Bron, and J. M. Van Dijl (2000) Signal peptide-dependent protein transport in Bacillus subtilis: a genome-based survey of the secretome. Microbiol. Mol. Biol. Rev. 64: 515–547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tjalsma, H., A. Bolhuis, M. L. Van Roosmalen, T. Wiegert, W. Schumann, C. P. Broekhuizen, W. J. Quax, G. Venema, S. Bron, and J. M. van Dijl (1998) Functional analysis of the secretory precursor processing machinery of Bacillus subtilis: identification of a eubacterial homolog of archaeal and eukaryotic signal peptidases. Genes Dev. 12: 2318–2331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. van Roosmalen, M. L., N. Geukens, J. D. H. Jongbloed, H. Tjalsma, J. Y. F. Dubois, S. Bron, J. M. van Dijl, and J. Anne (2004) Type I signal peptidases of Gram-positive bacteria. Biochim. Biophys. Acta. 1694: 279–297.

    Article  CAS  PubMed  Google Scholar 

  36. Dalbey, R. E., P. Wang, and J. M. van Dijl (2012) Membrane proteases in the bacterial protein secretion and quality control pathway. Microbiol. Mol. Biol. Rev. 76: 311–330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Heinrich, J., T. Lundén, V. P. Kontinen, and T. Wiegert (2008) The Bacillus subtilis ABC transporter EcsAB influences intramembrane proteolysis through RasP. Microbiology. 154: 1989–1997.

    Article  CAS  PubMed  Google Scholar 

  38. Neef, J., C. Bongiorni, V. J. Goosens, B. Schmidt, and J. M. van Dijl (2017) Intramembrane protease RasP boosts protein production in Bacillus. Microb. Cell Fact. 16: 57.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Bolhuis, A., A. Matzen, H. L. Hyyryläinen, V. P. Kontinen, R. Meima, J. Chapuis, G. Venema, S. Bron, R. Freudl, and J. M. van Dijl (1999) Signal peptide peptidase- and ClpP-like proteins of Bacillus subtilis required for efficient translocation and processing of secretory proteins. J. Biol. Chem. 274: 24585–24592.

    Article  CAS  PubMed  Google Scholar 

  40. Neef, J., C. Bongiorni, B. Schmidt, V. J. Goosens, and J. M. van Dijl (2020) Relative contributions of non-essential Sec pathway components and cell envelope-associated proteases to highlevel enzyme secretion by Bacillus subtilis. Microb. Cell Fact. 19: 52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hyyrylainen, H. L., A. Bolhuis, E. Darmon, L. Muukkonen, P. Koski, M. Vitikainen, M. Sarvas, Z. Pragai, S. Bron, J. M. van Dijl, and V. P. Kontinen (2001) A novel two-component regulatory system in Bacillus subtilis for the survival of severe secretion stress. Mol. Microbiol. 41: 1159–1172.

    Article  CAS  PubMed  Google Scholar 

  42. Antelmann, H., E. Darmon, D. Noone, J. W. Veening, H. Westers, S. Bron, O. P. Kuipers, K. M. Devine, M. Hecker, and J. M. van Dijl (2003) The extracellular proteome of Bacillus subtilis under secretion stress conditions. Mol. Microbiol. 49: 143–156.

    Article  CAS  PubMed  Google Scholar 

  43. Vitikainen, M., H. L. Hyyrylainen, A. Kivimaki, V. P. Kontinen, and M. Sarvas (2005) Secretion of heterologous proteins in Bacillus subtilis can be improved by engineering cell components affecting post-translocational protein folding and degradation. J. Appl. Microbiol. 99: 363–375.

    Article  CAS  PubMed  Google Scholar 

  44. Lulko, A. T., J. W. Veening, G. Buist, W. K. Smits, E. J. Blom, A. C. Beekman, S. Bron, and O. P. Kuipers (2007) Production and secretion stress caused by overexpression of heterologous alpha-amylase leads to inhibition of sporulation and a prolonged motile phase in Bacillus subtilis. Appl. Environ. Microbiol. 73: 5354–5362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Noone, D., A. Howell, R. Collery, and K. M. Devine (2001) YkdA and YvtA, HtrA-like serine proteases in Bacillus subtilis, engage in negative autoregulation and reciprocal cross-regulation of ykdA and yvtA gene expression. J. Bacteriol. 183: 654–663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Darmon, E., D. Noone, A. Masson, S. Bron, O. P. Kuipers, K. M. Devine, and J. M. van Dijl (2002) A novel class of heat and secretion stress-responsive genes is controlled by the autoregulated CssRS two-component system of Bacillus subtilis. J. Bacteriol. 184: 5661–5671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Margot, P. and D. Karamata (1996) The wprA gene of Bacillus subtilis 168, expressed during exponential growth, encodes a cell-wall-associated protease. Microbiology. 142: 3437–3444.

    Article  CAS  PubMed  Google Scholar 

  48. Stephenson, K. and C. R. Harwood (1998) Influence of a cell-wall-associated protease on production of α-amylase by Bacillus subtilis. Appl. Environ. Microbiol. 64: 2875–2881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bolhuis, A., H. Tjalsma, K. Stephenson, C. R. Harwood, G. Venema, S. Bron, and J. M. van Dijl (1999) Different mechanisms for thermal inactivation of Bacillus subtilis signal peptidase mutants. J. Biol. Chem. 274: 15865–15868.

    Article  CAS  PubMed  Google Scholar 

  50. Krishnappa, L., A. Dreisbach, A. Otto, V. J. Goosens, R. M. Cranenburgh, C. R. Harwood, D. Becher, and J. M. Van Dijl (2013) Extracytoplasmic proteases determining the cleavage and release of secreted proteins, lipoproteins, and membrane proteins in Bacillus subtilis. J. Proteome Res. 12: 4101–4110.

    Article  CAS  PubMed  Google Scholar 

  51. Aguilar Suarez, R., J. Stulke, and J. M. van Dijl (2019) Less is more: toward a genome-reduced Bacillus cell factory for “difficult proteins”. ACS Synth. Biol. 8: 99–108.

    Article  PubMed  CAS  Google Scholar 

  52. Chambert, R., F. Benyahia, and M. F. Petit-Glatron (1990) Secretion of Bacillus subtilis levansucrase. Fe(III) could act as a cofactor in an efficient coupling of the folding and translocation processes. Biochem. J. 265: 375–382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hyyrylainen, H. L., M. Vitikainen, J. Thwaite, H. Wu, M. Sarvas, C. R. Harwood, V. P. Kontinen, and K. Stephenson (2000) D-Alanine substitution of teichoic acids as a modulator of protein folding and stability at the cytoplasmic membrane/cell wall interface of Bacillus subtilis. J. Biol. Chem. 275: 26696–26703.

    Article  CAS  PubMed  Google Scholar 

  54. Sarvas, M., C. R. Harwood, S. Bron, and J. M. van Dijl (2004) Post-translocational folding of secretory proteins in Grampositive bacteria. Biochim. Biophys. Acta. 1694: 311–327.

    CAS  PubMed  Google Scholar 

  55. Goosens, V. J., C. G. Monteferrante, and J. M. van Dijl (2014) The Tat system of Gram-positive bacteria. Biochim. Biophys. Acta. 1843: 1698–1706.

    Article  CAS  PubMed  Google Scholar 

  56. Goosens, V. J. and J. M. van Dijl (2016) Twin-arginine protein translocation. pp. 69–94. In: F. Bagnoli and R. Rappuoli (eds.) Protein and Sugar Export and Assembly in Gram-positive Bacteria. Springer International Publishing AG, Cham, Switzerland.

    Chapter  Google Scholar 

  57. Frain, K. M., C. Robinson, and J. M. van Dijl (2019) Transport of folded proteins by the Tat System. Protein J. 38: 377–388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Berks, B. C. (1996) A common export pathway for proteins binding complex redox cofactors? Mol. Microbiol. 22: 393–404.

    Article  CAS  PubMed  Google Scholar 

  59. Chaddock, A. M., A. Mant, I. Karnauchov, S. Brink, R. G. Herrmann, R. B. Klösgen, and C. Robinson (1995) A new type of signal peptide: central role of a twin-arginine motif in transfer signals for the delta pH-dependent thylakoidal protein translocase. EMBO J. 14: 2715–2722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Jongbloed, J. D. H., U. Martin, H. Antelmann, M. Hecker, H. Tjalsma, G. Venema, S. Bron, J. M. van Dijl, and J. Müller (2000) TatC is a specificity determinant for protein secretion via the twin-arginine translocation pathway. J. Biol. Chem. 275: 41350–41357.

    Article  CAS  PubMed  Google Scholar 

  61. Pop, O., U. Martin, C. Abel, and J. P. Müller (2002) The twin-arginine signal peptide of PhoD and the TatAd/Cd proteins of Bacillus subtilis form an autonomous Tat translocation system. J. Biol. Chem. 277: 3268–3273.

    Article  CAS  PubMed  Google Scholar 

  62. Jongbloed, J. D. H., U. Grieger, H. Antelmann, M. Hecker, R. Nijland, S. Bron, and J. M. van Dijl (2004) Two minimal Tat translocases in Bacillus. Mol. Microbiol. 54: 1319–1325.

    Article  CAS  PubMed  Google Scholar 

  63. Nicolas, P., U. Mäder, E. Dervyn, T. Rochat, A. Leduc, N. Pigeonneau, E. Bidnenko, E. Marchadier, M. Hoebeke, S. Aymerich, D. Becher, P. Bisicchia, E. Botella, O. Delumeau, G. Doherty, E. L. Denham, M. J. Fogg, V. Fromion, A. Goelzer, A. Hansen, E. Härtig, C. R. Harwood, G. Homuth, H. Jarmer, M. Jules, E. Klipp, L. Le Chat, F. Lecointe, P. Lewis, W. Liebermeister, A. March, R. A. T. Mars, P. Nannapaneni, D. Noone, S. Pohl, B. Rinn, F. Rügheimer, P. K. Sappa, F. Samson, M. Schaffer, B. Schwikowski, L. Steil, J. Stülke, T. Wiegert, K. M. Devine, A. J. Wilkinson, J. M. van Dijl, M. Hecker, U. Völker, P. Bessières, and P. Noirot (2012) Condition-dependent transcriptome reveals high-level regulatory architecture in Bacillus subtilis. Science. 335: 1103–1106.

    Article  CAS  PubMed  Google Scholar 

  64. Goosens, V. J., A. Otto, C. Glasner, C. C. Monteferrante, R. van der Ploeg, M. Hecker, D. Becher, and J. M. van Dijl (2013) Novel twin-arginine translocation pathway-dependent phenotypes of Bacillus subtilis unveiled by quantitative proteomics. J. Proteome Res. 12: 796–807.

    Article  CAS  PubMed  Google Scholar 

  65. Goosens, V. J., C. G. Monteferrante, and J. M. van Dijl (2014) Co-factor insertion and disulfide bond requirements for twin-arginine translocase-dependent export of the Bacillus subtilis Rieske protein QcrA. J. Biol. Chem. 289: 13124–13131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Monteferrante, C. G., M. Miethke, R. van der Ploeg, C. Glasner, and J. M. van Dijl (2012) Specific targeting of the metallophosphoesterase YkuE to the Bacillus cell wall requires the twin-arginine translocation system. J. Biol. Chem. 287: 29789–29800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Miethke, M., C. G. Monteferrante, M. A. Marahiel, and J. M. van Dijl (2013) The Bacillus subtilis EfeUOB transporter is essential for high-affinity acquisition of ferrous and ferric iron. Biochim. Biophys. Acta. 1833: 2267–2278.

    Article  CAS  PubMed  Google Scholar 

  68. Eijlander, R. T., J. D. H. Jongbloed, and O. P. Kuipers (2008) Relaxed specificity of the Bacillus subtilis TatAdCd translocase in Tat-dependent protein secretion. J. Bacteriol. 191: 196–202.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Goosens, V. J., A. De-San-Eustaquio-Campillo, R. Carballido-López, and J. M. van Dijl (2015) A Tat ménage à trois — The role of Bacillus subtilis TatAc in twin-arginine protein translocation. Biochim. Biophys. Acta — Mol. Cell Res. 1853: 2745–2753.

    Article  CAS  Google Scholar 

  70. Blümmel, A. S., L. A. Haag, E. Eimer, M. Müller, and J. Fröbel (2015) Initial assembly steps of a translocase for folded proteins. Nat. Commun. 6: 7234.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Patel, R., C. Vasilev, D. Beck, C. G. Monteferrante, J. M. van Dijl, C. N. Hunter, C. Smith, and C. Robinson (2014) A mutation leading to super-assembly of twin-arginine translocase (Tat) protein complexes. Biochim. Biophys. Acta — Mol. Cell Res. 1843: 1978–1986.

    Article  CAS  Google Scholar 

  72. Kim, J. Y., E. A. Fogarty, F. J. Lu, H. Zhu, G. D. Wheelock, L. A. Henderson, and M. P. DeLisa (2005) Twin-arginine translocation of active human tissue plasminogen activator in Escherichia coli. Appl. Environ. Microbiol. 71: 8451–8459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Fisher, A. C., J. Y. Kim, R. Perez-Rodriguez, D. Tullman-Ercek, W. R. Fish, L. A. Henderson, and M. P. DeLisa (2008) Exploration of twin-arginine translocation for expression and purification of correctly folded proteins in Escherichia coli. Microb. Biotechnol. 1: 403–415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Browning, D. F., K. L. Richards, A. R. Peswani, J. Roobol, S. J. W. Busby, and C. Robinson (2017) Escherichia coli “TatExpress” strains super-secrete human growth hormone into the bacterial periplasm by the Tat pathway. Biotechnol. Bioeng. 114: 2828–2836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Guerrero Montero, I., K. L. Richards, C. Jawara, D. F. Browning, A. R. Peswani, M. Labrit, M. Allen, C. Aubry, E. Davé, D. P. Humphreys, S. J. W. Busby, and C. Robinson (2019) Escherichia coli “TatExpress” strains export several g/L human growth hormone to the periplasm by the Tat pathway. Biotechnol. Bioeng. 116: 3282–3291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Jongbloed, J. D. H., H. Antelmann, M. Hecker, R. Nijland, S. Bron, U. Airaksinen, F. Pries, W. J. Quax, J. M. van Dijl, and P. G. Braun (2002) Selective contribution of the twin-arginine translocation pathway to protein secretion in Bacillus subtilis. J. Biol. Chem. 277: 44068–44078.

    Article  CAS  PubMed  Google Scholar 

  77. Kolkman, M. A. B., R. van der Ploeg, M. Bertels, M. van Dijk, J. van der Laan, J. M. van Dijl, and E. Ferrari (2008) The twin-arginine signal peptide of Bacillus subtilis YwbN can direct either Tat- or Sec-dependent secretion of different cargo proteins: secretion of active subtilisin via the B. subtilis Tat pathway. Appl. Environ. Microbiol. 74: 7507–7513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kouwen, T. R. H. M., R. van der Ploeg, H. Antelmann, M. Hecker, G. Homuth, U. Mäder, and J. M. van Dijl (2009) Overflow of a hyper-produced secretory protein from the Bacillus Sec pathway into the Tat pathway for protein secretion as revealed by proteogenomics. Proteomics. 9: 1018–1032.

    Article  CAS  PubMed  Google Scholar 

  79. van der Ploeg, R., C. G. Monteferrante, S. Piersma, J. P. Barnett, T. R. H. M. Kouwen, C. Robinson, and J. M. van Dijl (2012) High-salinity growth conditions promote Tat-independent secretion of Tat substrates in Bacillus subtilis. Appl. Environ. Microbiol. 78: 7733–7744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Bolhuis, A., H. Tjalsma, H. E. Smith, A. de Jong, R. Meima, G. Venema, S. Bron, and J. M. van Dijl (1999) Evaluation of bottlenecks in the late stages of protein secretion in Bacillus subtilis. Appl. Environ. Microbiol. 65: 2934–2941.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Collier, D. N. (1994) Expression of Escherichia coli SecB in Bacillus subtilis facilitates secretion of the SecB-dependent maltose-binding protein of E. coli. J. Bacteriol. 176: 4937–4940.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Diao, L., Q. Dong, Z. Xu, S. Yang, J. Zhou, and R. Freudl (2012) Functional implementation of the posttranslational SecB-SecA protein-targeting pathway in Bacillus subtilis. Appl. Environ. Microbiol. 78: 651–659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kakeshita, H., Y. Kageyama, K. Ara, K. Ozaki, and K. Nakamura (2010) Enhanced extracellular production of heterologous proteins in Bacillus subtilis by deleting the C-terminal region of the SecA secretory machinery. Mol. Biotechnol. 46: 250–257.

    Article  CAS  PubMed  Google Scholar 

  84. Van Wely, K. H. M., J. Swaving, C. P. Broekhuizen, M. Rose, W. J. Quax, and A. J. M. Driessen (1999) Functional identification of the product of the Bacillus subtilis yvaL gene as a SecG homologue. J. Bacteriol. 181: 1786–1792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Chen, J., G. Fu, Y. Gai, P. Zheng, D. Zhang, and J. Wen (2015) Combinatorial Sec pathway analysis for improved heterologous protein secretion in Bacillus subtilis: identification of bottlenecks by systematic gene overexpression. Microb. Cell. Fact. 14: 92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. van Dijl, J. M., A. de Jong, J. Vehmaanpera, G. Venema, and S. Bron (1992) Signal peptidase I of Bacillus subtilis: patterns of conserved amino acids in prokaryotic and eukaryotic type I signal peptidases. EMBO J. 11: 2819–2828.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Bolhuis, A., A. Sorokin, V. Azevedo, S. D. Ehrlich, P. G. Braun, A. De Jong, G. Venema, S. Bron, and J. M. van Dijl (1996) Bacillus subtilis can modulate its capacity and specificity for protein secretion through temporally controlled expression of the sipS gene for signal peptidase I. Mol. Microbiol. 22: 605–618.

    Article  CAS  PubMed  Google Scholar 

  88. Meijer, W. J., A. de Jong, G. Bea, A. Wisman, H. Tjalsma, G. Venema, S. Bron, and J. M. van Dijl (1995) The endogenous Bacillus subtilis (natto) plasmids pTA1015 and pTA1040 contain signal peptidase-encoding genes: identification of a new structural module on cryptic plasmids. Mol. Microbiol. 17: 621–631.

    Article  CAS  PubMed  Google Scholar 

  89. Tjalsma, H., M. A. Noback, S. Bron, G. Venema, K. Yamane, and J. M. van Dijl (1997) Bacillus subtilis contains four closely related type I signal peptidases with overlapping substrate specificities. J. Biol. Chem. 272: 25983–25992.

    Article  CAS  PubMed  Google Scholar 

  90. Bron, S., A. Bolhuis, H. Tjalsma, S. Holsappel, G. Venema, and J. M. van Dijl (1998) Protein secretion and possible roles for multiple signal peptidases for precursor processing in Bacilli. J. Biotechnol. 64: 3–13.

    Article  CAS  PubMed  Google Scholar 

  91. Chen, J., Y. Gai, G. Fu, W. Zhou, D. Zhang, and J. Wen (2015) Enhanced extracellular production of α-amylase in Bacillus subtilis by optimization of regulatory elements and overexpression of PrsA lipoprotein. Biotechnol. Lett. 37: 899–906.

    Article  CAS  PubMed  Google Scholar 

  92. Ma, R. J., Y. H. Wang, L. Liu, L. L. Bai, and R. Ban (2018) Production enhancement of the extracellular lipase LipA in Bacillus subtilis: Effects of expression system and Sec pathway components. Protein Expr. Purif. 142: 81–87.

    Article  CAS  PubMed  Google Scholar 

  93. Yang, T., K. Irene, H. Liu, S. Liu, X. Zhang, M. Xu, and Z. Rao (2019) Enhanced extracellular gamma glutamyl transpeptidase production by overexpressing of PrsA lipoproteins and improving its mRNA stability in Bacillus subtilis and application in biosynthesis of L-theanine. J. Biotechnol. 302: 85–91.

    Article  CAS  PubMed  Google Scholar 

  94. Zhang, C., T. Tao, Q. Ying, D. Zhang, F. Lu, X. Bie, and Z. Lu (2012) Extracellular production of lipoxygenase from Anabaena sp. PCC 7120 in Bacillus subtilis and its effect on wheat protein. Appl. Microbiol. Biotechnol. 94: 949–958.

    Article  CAS  PubMed  Google Scholar 

  95. Wu, X. C., S. C. Ng, R. I. Near, and S. L. Wong (1993) Efficient production of a functional single-chain antidigoxin antibody via an engineered Bacillus subtilis expression-secretion system. Biotechnology. 11: 71–76.

    CAS  PubMed  Google Scholar 

  96. Wu, S. C., R. Ye, X. C. Wu, S. C. Ng, and S. L. Wong (1998) Enhanced secretory production of a single-chain antibody fragment from Bacillus subtilis by coproduction of molecular chaperones. J. Bacteriol. 180: 2830–2835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wu, S. C., J. C. Yeung, Y. Duan, R. Ye, S. J. Szarka, H. R. Habibi, and S. L. Wong (2002) Functional production and characterization of a fibrin-specific single-chain antibody fragment from Bacillus subtilis: effects of molecular chaperones and a wall-bound protease on antibody fragment production. Appl. Environ. Microbiol. 68: 3261–3269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Kakeshita, H., Y. Kageyama, K. Endo, M. Tohata, K. Ara, K. Ozaki, and K. Nakamura (2011) Secretion of biologically-active human interferon-β by Bacillus subtilis. Biotechnol. Lett. 33: 1847–1852.

    Article  CAS  PubMed  Google Scholar 

  99. Williams, R. C., M. L. Rees, M. F. Jacobs, Z. Pragai, J. E. Thwaite, L. W. J. Baillie, P. T. Emmerson, and C. R. Harwood (2003) Production of Bacillus anthracis protective antigen is dependent on the extracellular chaperone, PrsA. J. Biol. Chem. 278: 18056–18062.

    Article  CAS  PubMed  Google Scholar 

  100. Quesada-Ganuza, A., M. Antelo-Varela, J. C. Mouritzen, J. Bartel, D. Becher, M. Gjermansen, P. F. Hallin, K. F Appel, M. Kilstrup, M. D. Rasmussen, and A. K. Nielsen (2019) Identification and optimization of PrsA in Bacillus subtilis for improved yield of amylase. Microb. Cell Fact. 18: 158.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Kouwen, T. R. H. M. and J. M. van Dijl (2009) Interchangeable modules in bacterial thiol-disulfide exchange pathways. Trends Microbiol. 17: 6–12.

    Article  CAS  PubMed  Google Scholar 

  102. Dorenbos, R., T. Stein, J. Kabel, C. Bruand, A. Bolhuis, S. Bron, W. J. Quax, and J. M. van Dijl (2002) Thiol-disulfide oxidoreductases are essential for the production of the lantibiotic sublancin 168. J. Biol. Chem. 277: 16682–16688.

    Article  CAS  PubMed  Google Scholar 

  103. Meima, R., C. Eschevins, S. Fillinger, A. Bolhuis, L. W. Hamoen, R. Dorenbos, W. J. Quax, J. M. van Dijl, R. Provvedi, I. Chen, D. Dubnau, and S. Bron (2002) The bdbDC operon of Bacillus subtilis encodes thiol-disulfide oxidoreductases required for competence development. J. Biol. Chem. 277: 6994–7001.

    Article  CAS  PubMed  Google Scholar 

  104. Draskovic, I. and D. Dubnau (2005) Biogenesis of a putative channel protein, ComEC, required for DNA uptake: membrane topology, oligomerization and formation of disulphide bonds. Mol. Microbiol. 55: 881–896.

    Article  CAS  PubMed  Google Scholar 

  105. Bolhuis, A., G. Venema, W. J. Quax, S. Bron, and J. M. van Dijl (1999) Functional analysis of paralogous thiol-disulfide oxidoreductases in Bacillus subtilis. J. Biol. Chem. 274: 24531–24538.

    Article  CAS  PubMed  Google Scholar 

  106. Erlendsson, L. S. and L. Hederstedt (2002) Mutations in the thiol-disulfide oxidoreductases BdbC and BdbD can suppress cytochrome c deficiency of CcdA-defective Bacillus subtilis cells. J. Bacteriol. 184: 1423–1429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Erlendsson, L. S., R. M. Acheson, L. Hederstedt, and N. E. Le Brun (2003) Bacillus subtilis ResA is a thiol-disulfide oxidoreductase involved in cytochrome c synthesis. J. Biol. Chem. 278: 17852–17858.

    Article  CAS  PubMed  Google Scholar 

  108. Kawamura, F. and R. H. Doi (1984) Construction of a Bacillus subtilis double mutant deficient in extracellular alkaline and neutral proteases. J. Bacteriol. 160: 442–444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Westers, L., D. S. Dijkstra, H. Westers, J. M. van Dijl, and W. J. Quax (2006) Secretion of functional human interleukin-3 from Bacillus subtilis. J. Biotechnol. 123: 211–224.

    Article  CAS  PubMed  Google Scholar 

  110. Westers, L., H. Westers, G. Zanen, H. Antelmann, M. Hecker, D. Noone, K. M. Devine, J. M. van Dijl, and W. J. Quax (2008) Genetic or chemical protease inhibition causes significant changes in the Bacillus subtilis exoproteome. Proteomics. 8: 2704–2713.

    Article  CAS  PubMed  Google Scholar 

  111. Luo, Z., Q. Gao, X. Li, and J. Bao (2014) Cloning of LicB from Clostridium thermocellum and its efficient secretive expression of thermostable beta-1,3-1,4-glucanase. Appl. Biochem. Biotechnol. 173: 562–570.

    Article  CAS  PubMed  Google Scholar 

  112. Pohl, S., G. Bhavsar, J. Hulme, A. E. Bloor, G. Misirli, M. W. Leckenby, D. S. Radford, W. Smith, A. Wipat, E. D. Williamson, C. R. Harwood, and R. M. Cranenburgh (2013) Proteomic analysis of Bacillus subtilis strains engineered for improved production of heterologous proteins. Proteomics. 13: 3298–3308.

    Article  CAS  PubMed  Google Scholar 

  113. Krishnappa, L., C. G. Monteferrante, J. Neef, A. Dreisbach, and J. M. van Dijl (2014) Degradation of extracytoplasmic catalysts for protein folding in Bacillus subtilis. Appl. Environ. Microbiol. 80: 1463–1468.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Yamamoto, H., S. Kurosawa, and J. Sekiguchi (2003) Localization of the vegetative cell wall hydrolases LytC, LytE, and LytF on the Bacillus subtilis cell surface and stability of these enzymes to cell wall-bound or extracellular proteases. J. Bacteriol. 185: 6666–6677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Ara, K., K. Ozaki, K. Nakamura, K. Yamane, J. Sekiguchi, and N. Ogasawara (2007) Bacillus minimum genome factory: effective utilization of microbial genome information. Biotechnol. Appl. Biochem. 46: 169–178.

    Article  CAS  PubMed  Google Scholar 

  116. Manabe, K., Y. Kageyama, T. Morimoto, T. Ozawa, K. Sawada, K. Endo, M. Tohata, K. Ara, K. Ozaki, and N. Ogasawara (2011) Combined effect of improved cell yield and increased specific productivity enhances recombinant enzyme production in genome-reduced Bacillus subtilis strain MGB874. Appl. Environ. Microbiol. 77: 8370–8381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Manabe, K., Y. Kageyama, M. Tohata, K. Ara, K. Ozaki, and N. Ogasawara (2012) High external pH enables more efficient secretion of alkaline α-amylase AmyK38 by Bacillus subtilis. Microb. Cell Fact. 11: 74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Manabe, K., Y. Kageyama, T. Morimoto, E. Shimizu, H. Takahashi, S. Kanaya, K. Ara, K. Ozaki, and N. Ogasawara (2013) Improved production of secreted heterologous enzyme in Bacillus subtilis strain MGB874 via modification of glutamate metabolism and growth conditions. Microb. Cell Fact. 12: 18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Antelo-Varela, M., R. Aguilar Suárez, J. Bartel, M. Bernal-Cabas, T. Stobernack, T. Sura, J. M. van Dijl, S. Maaß, and D. Becher (2020) Membrane modulation of super-secreting “midiBacillus” expressing the major Staphylococcus aureus antigen — a mass-spectrometry-based absolute quantification approach. Front. Bioeng. Biotechnol. 8: 143.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Li, Y., X. Zhu, X. Zhang, J. Fu, Z. Wang, T. Chen, and X. Zhao (2016) Characterization of genome-reduced Bacillus subtilis strains and their application for the production of guanosine and thymidine. Microb. Cell Fact. 15: 94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Reuß, D. R., J. Altenbuchner, U. Mäder, H. Rath, T. Ischebeck, P. K. Sappa, A. Thurmer, C. Guerin, P. Nicolas, L. Steil, B. Zhu, I. Feussner, S. Klumpp, R. Daniel, F. M. Commichau, U. Völker, and J. Stülke (2017) Large-scale reduction of the Bacillus subtilis genome: consequences for the transcriptional network, resource allocation, and metabolism. Genome Res. 27: 289–299.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Averesch, N. J. H. and L. J. Rothschild (2019) Metabolic engineering of Bacillus subtilis for production of para-aminobenzoic acid — unexpected importance of carbon source is an advantage for space application. Microb. Biotechnol. 12: 703–714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Fu, J., G. Huo, L. Feng, Y. Mao, Z. Wang, H. Ma, T. Chen, and X. Zhao (2016) Metabolic engineering of Bacillus subtilis for chiral pure meso-2,3-butanediol production. Biotechnol. Biofuels. 9: 90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Romero, S., E. Merino, F. Bolívar, G. Gosset, and A. Martinez (2007) Metabolic engineering of Bacillus subtilis for ethanol production: lactate dehydrogenase plays a key role in fermentative metabolism. Appl. Environ. Microbiol. 73: 5190–5198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Xu, H., C. Teng, and M. Yu (2006) Improvements of thermal property and crystallization behavior of PLLA based multiblock copolymer by forming stereocomplex with PDLA oligomer. Polymer. 47: 3922–3928.

    Article  CAS  Google Scholar 

  126. Awasthi, D., L. Wang, M. S. Rhee, Q. Wang, D. Chauliac, L. O. Ingram, and K. T. Shanmugam (2018) Metabolic engineering of Bacillus subtilis for production of D-lactic acid. Biotechnol. Bioeng. 115: 453–463.

    Article  CAS  PubMed  Google Scholar 

  127. Yang, S., Y. Cao, L. Sun, C. Li, X. Lin, Z. Cai, G. Zhang, and H. Song (2019) Modular pathway engineering of Bacillus subtilis to promote de novo biosynthesis of menaquinone-7. ACS Synth. Biol. 8: 70–81.

    Article  CAS  PubMed  Google Scholar 

  128. Revuelta, J. L., R. Ledesma-Amaro, P. Lozano-Martinez, D. Díaz-Fernández, R. M. Buey, and A. Jiménez (2017) Bioproduction of riboflavin: a bright yellow history. J. Ind. Microbiol. Biotechnol. 44: 659–665.

    Article  CAS  PubMed  Google Scholar 

  129. Abdallah, I. I., H. Pramastya, R. van Merkerk, Sukrasno, and W. J. Quax (2019) Metabolic engineering of Bacillus subtilis toward taxadiene biosynthesis as the first committed step for taxol production. Front. Microbiol. 10: 218.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Berridge, M. J. (2009) Inositol trisphosphate and calcium signalling mechanisms. Biochim. Biophys. Acta. 1793: 933–940.

    Article  CAS  PubMed  Google Scholar 

  131. Clements, R. S. and B. Darnell (1980) myo-Inositol content of common foods: development of a high-myo-inositol diet. Am. J. Clin. Nutr. 33: 1954–1967.

    Article  CAS  PubMed  Google Scholar 

  132. Reynolds, J. E. F. (1993) Martindale: The Extra Pharmacopoeia. 30th ed., p. 1379. Pharmaceutical Press, London, UK.

    Google Scholar 

  133. McLaurin, J., M. E. Kierstead, M. E. Brown, C. A. Hawkes, M. H. Lambermon, A. L. Phinney, A. A. Darabie, J. E. Cousins, J. E. French, M. F. Lan, F. Chen, S. S. N. Wong, H. T. J. Mount, P. E. Fraser, D. Westaway, and P. St George-Hyslop (2006) Cyclohexanehexol inhibitors of Abeta aggregation prevent and reverse Alzheimer phenotype in a mouse model. Nat. Med. 12: 801–808.

    Article  CAS  PubMed  Google Scholar 

  134. Larner, J., L. C. Huang, C. F. Schwartz, A. S. Oswald, T. Y. Shen, M. Kinter, G. Z. Tang, and K. Zeller (1988) Rat liver insulin mediator which stimulates pyruvate dehydrogenase phosphatase contains galactosamine and d-chiroinositol. Biochem. Biophys. Res. Commun. 151: 1416–1426.

    Article  CAS  PubMed  Google Scholar 

  135. Iuorno, M. J., D. J. Jakubowicz, J. P. Baillargeon, P. Dillon, R. D. Gunn, G. Allan, and J. E. Nestler (2002) Effects of d-chiro-inositol in lean women with the polycystic ovary syndrome. Endocr. Pract. 8: 417–423.

    Article  PubMed  Google Scholar 

  136. Yamaoka, M., S. Osawa, T. Morinaga, S. Takenaka, and K. Yoshida (2011) A cell factory of Bacillus subtilis engineered for the simple bioconversion of myo-inositol to scyllo-inositol, a potential therapeutic agent for Alzheimer’s disease. Microb. Cell Fact. 10: 69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Yoshida, K., M. Yamaguchi, T. Morinaga, M. Kinehara, M. Ikeuchi, H. Ashida, and Y. Fujita (2008) myo-Inositol catabolism in Bacillus subtilis. J. Biol. Chem. 283: 10415–10424.

    Article  CAS  PubMed  Google Scholar 

  138. Morinaga, T., T. Matsuse, H. Ashida, and K. Yoshida (2010) Differential substrate specificity of two inositol transporters of Bacillus subtilis. Biosci. Biotechnol. Biochem. 74: 1312–1314.

    Article  CAS  PubMed  Google Scholar 

  139. Ramaley, R., Y. Fujita, and E. Freese (1979) Purification and properties of Bacillus subtilis inositol dehydrogenase. J. Biol. Chem. 254: 7684–7690.

    Article  CAS  PubMed  Google Scholar 

  140. Yoshida, K., M. Yamaguchi, T. Morinaga, M. Ikeuchi, M. Kinehara, and H. Ashida (2006) Genetic modification of Bacillus subtilis for production of D-chiro-inositol, an investigational drug candidate for treatment of type 2 diabetes and polycystic ovary syndrome. Appl. Environ. Microbiol. 72: 1310–1315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Yoshida, K., D. Aoyama, I. Ishio, T. Shibayama, and Y. Fujita (1997) Organization and transcription of the myo-inositol operon, iol, of Bacillus subtilis. J. Bacteriol. 179: 4591–4598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Yoshida, K., Y. Yamamoto, K. Omae, M. Yamamoto, and Y. Fujita (2002) Identification of two myo-inositol transporter genes of Bacillus subtilis. J. Bacteriol. 184: 983–991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Yoshida, K., T. Shibayama, D. Aoyama, and Y. Fujita (1999) Interaction of a repressor and its binding sites for regulation of the Bacillus subtilis iol divergon. J. Mol. Biol. 285: 917–929.

    Article  CAS  PubMed  Google Scholar 

  144. Kang, D. M., K. Tanaka, S. Takenaka, S. Ishikawa, and K. Yoshida (2017) Bacillus subtilis iolU encodes an additional NADP+-dependent scyllo-inositol dehydrogenase. Biosci. Biotechnol. Biochem. 81: 1026–1032.

    Article  CAS  PubMed  Google Scholar 

  145. Tanaka, K., S. Tajima, S. Takenaka, and K. Yoshida (2013) An improved Bacillus subtilis cell factory for producing scyllo-inositol, a promising therapeutic agent for Alzheimer’s disease. Microb. Cell Fact. 12: 124.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Tanaka, K., A. Natsume, S. Ishikawa, S. Takenaka, and K. Yoshida (2017) A new-generation of Bacillus subtilis cell factory for further elevated scyllo-inositol production. Microb. Cell Fact. 16: 67.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Fujisawa, T., S. Fujinaga, and H. Atomi (2017) An in vitro enzyme system for the production of myo-inositol from starch. Appl. Environ. Microbiol. 83: e00550–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Terakawa, A., A. Natsume, A. Okada, S. Nishihata, J. Kuse, K. Tanaka, S. Takenaka, S. Ishikawa, and K. Yoshida (2016) Bacillus subtilis 5′-nucleotidases with various functions and substrate specificities. BMC Microbiol. 16: 249.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Michon, C., C. M. Kang, S. Karpenko, K. Tanaka, S. Ishikawa, and K. Yoshida (2020) A bacterial cell factory converting glucose into scyllo-inositol, a therapeutic agent for Alzheimer’s disease. Commun. Biol. 3: 93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Buescher, J. M., W. Liebermeister, M. Jules, M. Uhr, J. Muntel, E. Botella, B. Hessling, R. J. Kleijn, L. Le Chat, F. Lecointe, U. Mäder, P. Nicolas, S. Piersma, F. Rügheimer, D. Becher, P. Bessieres, E. Bidnenko, E. L. Denham, E. Dervyn, K. M. Devine, G. Doherty, S. Drulhe, L. Felicori, M. J. Fogg, A. Goelzer, A. Hansen, C. R. Harwood, M. Hecker, S. Hubner, C. Hultschig, H. Jarmer, E. Klipp, A. Leduc, P. Lewis, F. Molina, P. Noirot, S. Peres, N. Pigeonneau, S. Pohl, S. Rasmussen, B. Rinn, M. Schaffer, J. Schnidder, B. Schwikowski, J. M. van Dijl, P. Veiga, S. Walsh, A. J. Wilkinson, J. Stelling, S. Aymerich, and U. Sauer (2012) Global network reorganization during dynamic adaptations of Bacillus subtilis metabolism. Science. 335: 1099–1103.

    Article  CAS  PubMed  Google Scholar 

  151. Goelzer, A. and V. Fromion (2017) Resource allocation in living organisms. Biochem. Soc. Trans. 45: 945–952.

    Article  CAS  PubMed  Google Scholar 

  152. Bulović, A., S. Fischer, M. Dinh, F. Golib, W. Liebermeister, C. Poirier, L. Tournier, E. Klipp, V. Fromion, and A. Goelzer (2019) Automated generation of bacterial resource allocation models. Metab. Eng. 55: 12–22.

    Article  PubMed  CAS  Google Scholar 

  153. Dessalles, R., V. Fromion, and P. Robert (2020) Models of protein production along the cell cycle: An investigation of possible sources of noise. PLoS One. 15: e0226016.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Meyer, A., R. Pellaux, S. Potot, K. Becker, H. P. Hohmann, S. Panke, and M. Held (2015) Optimization of a whole-cell biocatalyst by employing genetically encoded product sensors inside nanolitre reactors. Nat. Chem. 7: 673–678.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

We thank our coworkers, past and present, and our friends from the international Bacillus community for the many wonderful discussions and collaborations we have enjoyed over many years. Further, JMvD thanks the Engineering Biology Research centre, University of Kobe, for the generous invitation to spend one month in Kobe as a visiting scholar to write this review in collaboration with KY.

The authors declare no conflict of interest.

Neither ethical approval nor informed consent was required for this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ken-ichi Yoshida or Jan Maarten van Dijl.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoshida, Ki., van Dijl, J.M. Engineering Bacillus subtilis Cells as Factories: Enzyme Secretion and Value-added Chemical Production. Biotechnol Bioproc E 25, 872–885 (2020). https://doi.org/10.1007/s12257-020-0104-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-020-0104-8

Keywords

Navigation