Skip to main content
Log in

Effective Diffusivity and Mass Transfer Coefficient during the Extraction of Paclitaxel from Taxus chinensis Using Methanol

  • Research Paper
  • Bioprocess Engineering
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Solid-liquid extraction of paclitaxel from the biomass of Taxus chinensis was investigated in order to understand the effect of temperature, solvent concentration and stirring speed on the mechanism and kinetics of extraction. Paclitaxel concentration-time data were analyzed using a second-order kinetic model to determine the kinetic parameters. A diffusion model was utilized to determine diffusivity and mass transfer coefficient taking into account both washing and diffusion phases together. The effective diffusion coefficient (1.2814 × 10−13-5.9765 × 10−13 m2/s), mass transfer coefficient (1.0020 × 10−7-1.2598 × 10−7 m/s), and Biot number (3.927–8.959) increased with increasing temperature (298–318 K), methanol concentration (75–100%) and stirring speed (170–570 rpm), which indicated that the external resistance to mass transfer is negligible due to efficient mixing of solute and solvent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lee, C. G. and J. H. Kim (2017) A kinetic and thermodynamic study of fractional precipitation of paclitaxel from Taxus chinensis. Process Biochem. 59: 216–222.

    Article  CAS  Google Scholar 

  2. Żwawiak, J. and L. Zaprutko (2014) A brief history of taxol. J. Med. Sci. 83: 47–52.

    Google Scholar 

  3. Lee, S. H. and J. H. Kim (2019) Kinetic and thermodynamic characteristics of microwave-assisted extraction for the recovery of paclitaxel from Taxus chinensis. Process Biochem. 76: 187–193.

    Article  CAS  Google Scholar 

  4. Yoo, K. W. and J. H. Kim (2018) Kinetics and mechanism of ultrasound-assisted extraction of paclitaxel from Taxus chinensis. Biotechnol. Bioprocess Eng. 23: 532–540.

    Article  CAS  Google Scholar 

  5. Kim, T. W. and J. H. Kim (2016) Kinetics and thermodynamics of paclitaxel extraction from plant cell culture. Korean J. Chem. Eng. 33: 3175–3183.

    Article  CAS  Google Scholar 

  6. Hong, S. S. and J. H. Kim (2000) Optimization of extraction process for mass production of paclitaxel from plant cell cultures. KSBB J. 15: 346–351.

    Google Scholar 

  7. Kim, J. H. (2006) Paclitaxel: Recovery and purification in commercialization step. KSBB J. 21: 1–10.

    Google Scholar 

  8. Pyo, S. H., H. B. Park, B. K. Song, B. H. Han, and J. H. Kim (2004) A large-scale purification of paclitaxel from cell cultures of Taxus chinensis. Process Biochem. 39: 1985–1991.

    Article  CAS  Google Scholar 

  9. Kim, Y. S. and J. H. Kim (2019) Isotherm, kinetic and thermodynamic studies on the adsorption of paclitaxel onto Sylopute. J. Chem. Thermodyn. 130: 104–113.

    Article  CAS  Google Scholar 

  10. Shin, H. S. and J. H. Kim (2016) Isotherm, kinetic and thermodynamic characteristics of adsorption of paclitaxel onto Daion HP-20. Process Biochem. 51: 917–924.

    Article  CAS  Google Scholar 

  11. Lee, J. Y. and J. H. Kim (2011) Effect of water content of organic solvent on microwave-assisted extraction efficiency of paclitaxel from plant cell culture. Korean J. Chem. Eng. 28: 1561–1565.

    Article  CAS  Google Scholar 

  12. Park, S. H. and J. H. Kim (2018) Isotherm, kinetic, and thermodynamic characteristics for adsorption of 2,5-xylenol onto activated carbon. Biotechnol. Bioprocess Eng. 23: 541–549.

    Article  CAS  Google Scholar 

  13. Krishnan, R. Y. and K. S. Rajan (2016) Microwave assisted extraction of flavonoids from Terminalia bellerica: Study of kinetics and thermodynamics. Sep. Purif. Technol. 157: 169–178.

    Article  Google Scholar 

  14. Krishnan, R. Y., M. N. Chandran, V. Vadivel, and K. S. Rajan (2016) Insights on the influence of microwave irradiation on the extraction of flavonoids from Terminalia chebula. Sep. Purif. Technol. 170: 224–233.

    Article  Google Scholar 

  15. Rakotondramasy-Rabesiaka, L., J. L. Havet, C. Porte, and H. Fauduet (2010) Estimation of effective diffusion and transfer rate during the protopine extraction process from Fumaria officinalis L. Sep. Purif. Technol. 76: 126–131.

    Article  CAS  Google Scholar 

  16. Lim, Y. S. and J. H. Kim (2017) Isotherm, kinetic and thermodynamic studies on the adsorption of 13-dehydroxybaccatin III from Taxus chinensis onto Sylopute. J. Chem. Thermodyn. 115: 261–268.

    Article  CAS  Google Scholar 

  17. Paunović, D. D., S. S. Mitić, G. S. Stojanović, M. N. Mitić, B. T. Stojanović, and M. B. Stojković (2015) Kinetics of the solidliquid extraction process of phenolic antioxidants and antioxidant capacity from hop (Humulus lupulus L.). Sep. Sci. Technol. 50: 1658–1664.

    Article  Google Scholar 

  18. Kostić, M. D., N. M. Joković, O. S. Stamenković, K. M. Rajković, P. S. Milić, and V. B. Veljković (2014) The kinetics and thermodynamics of hempseed oil extraction by n-hexane. Ind. Crops Prod. 52: 679–686.

    Article  Google Scholar 

  19. Meziane, S. and H. Kadi (2008) Kinetics and thermodynamics of oil extraction from olive cake. J. Am. Oil Chem. Soc. 85: 391–396.

    Article  CAS  Google Scholar 

  20. Ji, J., X. Lu, M. Cai, and Z. Xu (2006) Improvement of leaching process of Geniposide with ultrasound. Ultrason. Sonochem. 13: 455–462.

    Article  CAS  Google Scholar 

  21. Skerget, M. and Z. Knez (2001) Modelling high pressure extraction processes. Comput. Chem. Eng. 25: 879–886.

    Article  CAS  Google Scholar 

  22. Tao, Y., Z. Zhang, and D. W. Sun (2014) Experimental and modeling studies of ultrasound-assisted release of phenolics from oak chips into model wine. Ultrason. Sonochem. 21: 1839–1848.

    Article  CAS  Google Scholar 

  23. Cacace, J. E. and G. Mazza (2003) Mass transfer process during extraction of phenolic compounds from milled berries. J. Food Eng. 59: 379–389.

    Article  Google Scholar 

  24. Mohamada, M., M. W. Ali, A. Ripin, and A. Ahmad (2013) Effect of extraction process parameters on the yield of bioactive compounds from the roots of Eurycoma Longifolia. J. Teknol. 60: 51–57.

    Google Scholar 

  25. Mohamad, M., M. W. Ali, and A. Ahmad (2010) Modelling for extraction of major phytochemical components from Eurycoma longifolia. J. Appl. Sci. 10: 2572–2577.

    Article  Google Scholar 

Download references

Acknowledgement

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Korean Ministry of Education, Science and Technology (Grant Number: 2018R1D1A3A 03000683).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Hyun Kim.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jo, YJ., Kim, JH. Effective Diffusivity and Mass Transfer Coefficient during the Extraction of Paclitaxel from Taxus chinensis Using Methanol. Biotechnol Bioproc E 24, 818–823 (2019). https://doi.org/10.1007/s12257-019-0148-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-019-0148-9

Keywords

Navigation