Skip to main content
Log in

Microalgal Biomass and Lipid Production on Dairy Effluent Using a Novel Microalga, Chlorella sp. Isolated from Dairy Wastewater

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The present study focused on cost-effective production of microalgal biomass and lipid production on dairy effluent. The novel microalga, Chlorella sp. isolated from the dairy effluent showed high growth and lipid production on the undiluted and two-fold diluted dairy effluent which were four to five times higher than those of Chlorella vulgaris (control). The high growth of Chlorella sp. was thought to be possibly due to its heterotrophic growth capacity, high turbidity, COD, nutrients and trace elements. In contrast, C. vulgaris showed poor heterotrophic and photoautotrophic growth under the highly turbid conditions of dairy effluent. Both Chlorella sp. and C. vulgaris showed similar total FAME (mg FAME/g algal cells). The fatty acid composition analysis revealed that both Chlorella sp. and C. vulgaris possessed major C18 and C20 fatty acids which will be used for biodiesel production. Overall, the novel microalga, Chlorella sp. isolated from the dairy effluent showed high potential for cost-effective algal cultivation and lipid production on dairy effluent without any modification of process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Skjånes, K., C. Rebours, and P. Lindblad (2013) Potential for green microalgae to produce hydrogen, pharmaceuticals and other high value products in a combined process. Crit. Rev. Biotechnol. 33: 172–215.

    Article  CAS  PubMed  Google Scholar 

  2. Unc, A., E. Monfet, A. Potter, M. Camargo-Valero, and S. Smith (2017) Note to Editor: Microalgae cultivation for wastewater treatment and biofuel production: a bibliographic overview of past and current trends. Algal Res. 24: A2–A7.

    Article  Google Scholar 

  3. Ramsundar, P., A. Guldhe, P. Singh, and F. Bux (2017) Assessment of municipal wastewaters at various stages of treatment process as potential growth media for Chlorella sorokiniana under different modes of cultivation. Bioresour. Technol. 227: 82–92.

    Article  CAS  PubMed  Google Scholar 

  4. Hena, S., N. Fatihah, S. Tabassum, and N. Ismail (2015) Three stage cultivation process of facultative strain of Chlorella sorokiniana for treating dairy farm effluent and lipid enhancement. Water Res. 80: 346–356.

    Article  CAS  PubMed  Google Scholar 

  5. Karapinar Kapdan, I. and S. Aslan (2008) Application of the Stover–Kincannon kinetic model to nitrogen removal by Chlorella vulgaris in a continuously operated immobilized photobioreactor system. J. Chem. Technol. Biotechnol. 83: 998–1005.

    Article  CAS  Google Scholar 

  6. Chisti, Y. (2007) Biodiesel from microalgae. Biotech. adv. 25: 294–306.

    Article  CAS  Google Scholar 

  7. Nam, K., H. Lee, S.-W. Heo, Y. K. Chang, and J.-I. Han (2017) Cultivation of Chlorella vulgaris with swine wastewater and potential for algal biodiesel production. J. Appl. Phycol. 29: 1171–1178.

    Article  CAS  Google Scholar 

  8. Hoh, D., S. Watson, and E. Kan (2016) Algal biofilm reactors for integrated wastewater treatment and biofuel production: a review. Chem. Eng. J. 287: 466–473.

    Article  CAS  Google Scholar 

  9. Song, C., G. Chen, N. Ji, Q. Liu, Y. Kansha, and A. Tsutsumi (2015) Biodiesel production process from microalgae oil by waste heat recovery and process integration. Bioresour. Technol. 193: 192–199.

    Article  CAS  PubMed  Google Scholar 

  10. Gonçalves, A. L., J. C. Pires, and M. Simões (2017) A review on the use of microalgal consortia for wastewater treatment. Algal Res. 24: 403–415.

    Article  Google Scholar 

  11. Wang, L., Y. Li, P. Chen, M. Min, Y. Chen, J. Zhu, and R. R. Ruan (2010) Anaerobic digested dairy manure as a nutrient supplement for cultivation of oil-rich green microalgae Chlorella sp. Bioresour. Technol. 101: 2623–2628.

    Article  CAS  PubMed  Google Scholar 

  12. Ding J., F. Zhao, Y. Cao, L. Xing, W. Liu, S. Mei, and S. Li (2015) Cultivation of microalgae in dairy farm wastewater without sterilization. Int. J. Phytoremediation. 17: 222–227.

    Article  CAS  PubMed  Google Scholar 

  13. Johnson, M. B. and Z. Wen (2010) Development of an attached microalgal growth system for biofuel production. Appl. Microbiol. Biotechnol. 85: 525–534.

    Article  CAS  PubMed  Google Scholar 

  14. Ummalyma, S. B., and R. K. Sukumaran (2014) Cultivation of microalgae in dairy effluent for oil production and removal of organic pollution load. Bioresour. Technol. 165: 295–301.

    Article  CAS  PubMed  Google Scholar 

  15. Chokshi, K., I. Pancha, A. Ghosh, and S. Mishra (2016) Microalgal biomass generation by phycoremediation of dairy industry wastewater: an integrated approach towards sustainable biofuel production. Bioresour. Technol. 221: 455–460.

    Article  CAS  PubMed  Google Scholar 

  16. Hena S., H. Znad, K. Heong, and S. Judd (2018) Dairy farm wastewater treatment and lipid accumulation by Arthrospira platensis. Water Res. 128: 267–277.

    Article  CAS  PubMed  Google Scholar 

  17. Tam, N. F. Y. and Y. S. Wong (1996) Effect of ammonia concentrations on growth of Chlorella vulgaris and nitrogen removal from media. Bioresour. Technol. 57: 45–50.

    Article  CAS  Google Scholar 

  18. Kobayashi, N., E. A. Noel, A. Barnes, A. Watson, J. N. Rosenberg, G. Erickson, and G. A. Oyler (2013) Characterization of three Chlorella sorokiniana strains in anaerobic digested effluent from cattle manure. Bioresour. Technol. 150: 377–386.

    Article  CAS  PubMed  Google Scholar 

  19. Bligh, E. G. and W. J. Dyer (1959) A rapid method of total lipid extraction and purification. Can. J. Biochem. Phys. 37: 911–917.

    Article  CAS  Google Scholar 

  20. Kim, Y.-H., Y.-K. Choi, J. Park, S. Lee, Y.-H. Yang, H. J. Kim, T.-J. Park, Y. H. Kim, and S. H. Lee (2012) Ionic liquid-mediated extraction of lipids from algal biomass. Bioresour. Technol. 109: 312–315.

    Article  CAS  PubMed  Google Scholar 

  21. Griffiths, M. J., C. Garcin, R. P. van Hille, and S. T. Harrison (2011) Interference by pigment in the estimation of microalgal biomass concentration by optical density. J. Microbiol. Methods. 85: 119–123.

    Article  CAS  PubMed  Google Scholar 

  22. Choi, Y.-K., R. S. Kumaran, H. J. Jeon, H.-J. Song, Y.-H. Yang, S. H. Lee, K.-G. Song, K. J. Kim, V. Singh, and H. J. Kim (2015) LED light stress induced biomass and fatty acid production in microalgal biosystem, Acutodesmus obliquus. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 145: 245–253.

    Article  CAS  Google Scholar 

  23. Jeon, H. J., Y.-K. Choi, K.-G. Song, S. H. Lee, Y.-H. Yang, H. Kim, S. Kim, R. Kumaran, S. W. Hong, and H. J. Kim (2013) Development of a photoelectrochemical sensor for monitoring algal biomass (Chlorella vulgaris). Sens. Actuators B: Chem. 185: 405–410.

    Article  CAS  Google Scholar 

  24. Wang, L., M. Min, Y. Li, P. Chen, Y. Chen, Y. Liu, Y. Wang, and R. Ruan (2010) Cultivation of green algae Chlorella sp. in different wastewaters from municipal wastewater treatment plant. Appl, Biochem. Biotechnol. 162: 1174–1186.

    Article  CAS  Google Scholar 

  25. Bohutskyi, P., K. Liu, B. A. Kessler, T. Kula, Y. Hong, E. J. Bouwer, M. J. Betenbaugh, and F. T. Allnutt (2014) Mineral and non-carbon nutrient utilization and recovery during sequential phototrophic-heterotrophic growth of lipid-rich algae. Appl. Microbiol. Biotechnol. 98: 5261–5273.

    Article  CAS  PubMed  Google Scholar 

  26. Yang, J., J. Cao, G. Xing, and H. Yuan (2015) Lipid production combined with biosorption and bioaccumulation of cadmium, copper, manganese and zinc by oleaginous microalgae Chlorella minutissima UTEX2341. Bioresour. Technol. 175: 537–544.

    Article  CAS  PubMed  Google Scholar 

  27. Franklin, N. M., J. L. Stauber, R. P. Lim, and P. Petocz (2002) Toxicity of metal mixtures to a tropical freshwater alga (Chlorella sp.): the effect of interactions between copper, cadmium, and zinc on metal cell binding and uptake. Environ. Toxicol. Chem. 21: 2412–2422.

    Article  CAS  PubMed  Google Scholar 

  28. Zhu, L., Z. Wang, Q. Shu, J. Takala, E. Hiltunen, P. Feng, and Z. Yuan (2013) Nutrient removal and biodiesel production by integration of freshwater algae cultivation with piggery wastewater treatment. Water Rese. 47: 4294–4302.

    Article  CAS  Google Scholar 

  29. Shen, L., J. D. Ndayambaje, T. Murwanashyaka, W. Cui, E. Manirafasha, C. Chen, Y. Wang, and Y. Lu (2017) Assessment upon heterotrophic microalgae screened from wastewater microbiota for concurrent pollutants removal and biofuel production. Bioresour. Technol. 245: 386–393.

    Article  CAS  PubMed  Google Scholar 

  30. Chen, M., H. Tang, H. Ma, T. C. Holland, K. Y. S. Ng, and S. O. Salley (2011) Effect of nutrients on growth and lipid accumulation in the green algae Dunaliella tertiolecta. Bioresour. Technol. 102: 1649–1655.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eunsung Kan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, YK., Jang, H.M. & Kan, E. Microalgal Biomass and Lipid Production on Dairy Effluent Using a Novel Microalga, Chlorella sp. Isolated from Dairy Wastewater. Biotechnol Bioproc E 23, 333–340 (2018). https://doi.org/10.1007/s12257-018-0094-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-018-0094-y

Keywords

Navigation