Skip to main content
Log in

Physicochemical characterization of gelatin-immobilized, acrylic acid-bacterial cellulose nanofibers as cell scaffolds using gamma-irradiation

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Bacterial cellulose (BC) has been shown to have a high-burst pressure, high-water contact, and ultrafine highly nanofibrous structure similar with that in a natural extracellular matrix (ECM). In the present study, we developed a BC-based functional scaffold for tissue engineering using radiation technology. BC was generated by Gluconacetobacter hansenii TL-2C. Acrylic acid (AAc) was grafted onto BC surfaces under aqueous conditions using gamma-ray irradiation. The characterization of the scaffold was performed by scanning electron microscopy, ATR-FTIR spectroscopy, a toluidine blue O assay, and 2,4,6,-trinitro-benzensulfonic acid assay. AAc was grafted on the BC under gamma-ray irradiation. Gelatin was chemically conjugated on the AAc-BC scaffolds through EDC chemistry. The morphology of the modified BC nanofibers did not change, while representative features of AAc and gelatin were maintained. The adhesion and spreading of human mesenchymal stem cells was improved on the gelatin-AAc-BC nanofibers compared to unmodified BC and AAc-BC nanofibers. Our results suggest that gelatin-immobilized BC nanofiber scaffolds can be a promising way to fabricate three-dimentional, nanofibrous scaffolds that accelerate cell behavior for biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Langer, R. and J. P. Vacanti (1993) Tissue engineering. Sci. 260: 920–926.

    Article  CAS  Google Scholar 

  2. Lutolf, M. P. and J. A. Hubbell (2005) Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat. Biotechnol. 23: 47–55.

    Article  CAS  Google Scholar 

  3. Elsdale, T. and J. Bard (1972) Collagen substrata for studies on cell behavior. J. Cell Biol. 54: 626–637.

    Article  CAS  Google Scholar 

  4. Palecek, S. P., J. C. Loftus, M. H. Ginsberg, D. A. Lauffenburger, and A. F. Horwitz (1997) Integrin-ligand binding properties govern cell migration speed through cell-substratum adhesiveness. Nature 385: 537–540.

    Article  CAS  Google Scholar 

  5. Folkman, J. and A. Moscona (1978) Role of cell shape in growth control. 237: 345–349.

    Google Scholar 

  6. Benya, P. D., and J. D. Shaffer (1982) Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell. 30: 215–224.

    Article  CAS  Google Scholar 

  7. Wan, Y., C. Gao, M. Han, H. Liang, K. Ren, Y. Wang, and H. Luo (2011) Preparation and characterization of bacterial cellulose/ heparin hybrid nanofiber for potential vascular tissue engineering scaffolds. Poly. Adv. Technol. 22: 2643–2648.

    Article  CAS  Google Scholar 

  8. Schumann, D. A., J. Wippermann, D. O. Klemm, F. Kramer, D. Koth, H. Kosmehl, T. Wahlers, and S. Salehi-Gelani (2009) Artificial vascular implants from bacterial cellulose: preliminary results of small arterial substitutes. Cellulose 16: 877–885.

    Article  CAS  Google Scholar 

  9. New, N., T. Furuike, and H. Tamura (2010) Selection of a biopolymer based on attachment, morphology and proliferation of fibroblast NIH/3T3 cells for the development of a biodegradable tissue regeneration template: Alginate, bacterial cellulose and gelatin. Proc. Biochem. 45: 457–466.

    Article  Google Scholar 

  10. Wan, Y. Z., L. Hong, S. R. Jia, Y. Huang, Y. Zhu, Y. L. Wang, and H. J. Jiang (2006) Synthesis and characterization of hydroxyapatite- bacterial cellulose nanocomposites. Comp. Sci. Technol. 66: 1825–1832.

    Article  CAS  Google Scholar 

  11. Muller, F. A., L. Muller, I. Hofmann, P. Greil, M. M. Wenzel, and R. Staudenmaier (2006) Cellulose-based scaffold materials for cartilage tissue engineering. Biomater. 27: 3955–3963.

    Article  Google Scholar 

  12. Brown, R. M., J. H. Willison, and C. L. Richardson (1976) Cellulose biosynthesis in Acetobacter xylinum: Visualization of the site of synthesis and direct measurement of the in vivo process. Proc. Nat. Acad. Sci. 73: 4565–4569.

    Article  CAS  Google Scholar 

  13. Czaja, W. K., D. J. Young, M. Kawecki, and R. M. Brown (2007) The future prospects of microbial cellulose in biomedical applications. Biomacromol. 8: 1–12.

    Article  CAS  Google Scholar 

  14. Shin, Y. M., K.-S. Kim, Y. M. Lim, Y. C. Nho, and H. Shin (2008) Modulation of spreading, proliferation, and differentiation of human mesenchymal stem cells on gelatin-immobilized poly (L-lactide-co-e-caprolactone) substrates. Biomacromol. 9: 1772–1781.

    Article  CAS  Google Scholar 

  15. Shin, Y. M., H. Shin, and Y. M. Lim (2010) Surface modification of electrospun poly (L-lactide-co-e-caprolactone) fibrous meshes with a RGD peptide for the control of adhesion, proliferation and differentiation of the preosteoblastic cells. Macromol. Res. 18: 472–481.

    Article  CAS  Google Scholar 

  16. Choi, K. H. and C. H. Moon (2004) Effect of carbon source supplement on the gel production from citrus juice by Gluconacetobacter hansenii TL-2C. J.Kor. Soc. Food Sci. Nutrit. 33: 170–175.

    Article  CAS  Google Scholar 

  17. Jeong, S. I., Y. M. Lee, J. Lee, Y. M. Shin, H. Shin, Y. M. Lim, and Y. C. Nho (2008) Preparation and characterization of Temperature- sensitive Poly (N-isopropylacrylamide)-g-Poly(L-lactide-co-e-caprolactone)Nanofibers. Macromol. Res. 16: 139–148.

    Article  CAS  Google Scholar 

  18. Hinrichs, W. L. J., H. W. M. Ten Hoopen, M. J. B. Wissink, G. H. M. Engbers, and J. Feijen (1997) Design of a new type of coating for the controlled release of heparin. J. Control. Rel. 45: 163–176.

    Article  CAS  Google Scholar 

  19. Kim, M. S., I. Jun, Y. M. Shin, W. Jang, S. I. Kim, and H. Shin (2010) The Development of Genipin-crosslinked Poly (caprolactone)( PCL)/gelatin nanofibers for tissue engineering applications. Macromol. Biosci. 10: 91–100.

    Article  CAS  Google Scholar 

  20. Wan, Y. Z., Y. Huang, C. D. Yuan, S. Raman, Y. Zhu, H. J. Jiang, F. He, and C. Gao (2007) Biomimetic synthesis of hydroxyapatite/ bacterial cellulose nanocomposites for biomedical applications. Mat. Sci. Eng: C. 27: 855–864.

    Article  CAS  Google Scholar 

  21. Andrade, F. K., R. Costa, L. Domingues, R. Soares, and M. Gama (2010) Improvingbacterial cellulose for blood vessel replacement: Functionalization with a chimeric protein containing a cellulose-binding module and an adhesion peptide. Acta Biomaterial. 6: 4034–4041.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youn-Mook Lim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, YM., Jeong, S.I., Shin, Y.M. et al. Physicochemical characterization of gelatin-immobilized, acrylic acid-bacterial cellulose nanofibers as cell scaffolds using gamma-irradiation. Biotechnol Bioproc E 20, 942–947 (2015). https://doi.org/10.1007/s12257-015-0175-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-015-0175-0

Keywords

Navigation