Skip to main content

Advertisement

Log in

Clinical Significance of Trk Receptor Expression as a New Therapeutic Target in Hepatocellular Carcinoma

  • Original Article
  • Published:
Pathology & Oncology Research

Abstract

Oncogenic fusion of the tropomyosin receptor kinase (Trk) receptor family encoded by the NTRK gene has been found in several carcinomas. About ten targeted therapies have been developed and clinical trials are in progress. However, the results of studies on expression of the Trk receptor in HCC have not yet been published. Immunohistochemical staining was performed using anti-TrkA+B+C antibody (ab181560, Abcam) in 288 curatively resected primary HCC samples, and the correlation between Trk expression and NTRK copy number was assessed. Targeted next generation sequencing was performed in cases with Trk overexpression to detect NTRK fusion genes. Overexpression of Trk protein was observed in 21 (7.3%) of 288 cases. The Trk overexpression group showed a trend toward shorter recurrence-free survival (RFS) (p = 0.092) and overall survival (OS) (p = 0.079) than the low expression group, with frequent multicentric occurrence. Differences in RFS and OS were statistically significant in specific sub-populations including AJCC T1 stage HCCs, tumors less than 5 cm, patients without cirrhosis, tumors without vascular invasion, or Edmondson grades I and II. Trk expression was also an independent prognostic factor in both RFS and OS. Trk expression was not associated with copy number of each NTRK gene, and NTRK fusion was not detected in HCCs with Trk overexpression. Trk expression might play an important role in the development and progression of HCC, and emerging target therapy against the Trk protein could be applicable in patients with Trk-overexpressing HCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Amatu A, Sartore-Bianchi A, Siena S (2016) NTRK gene fusions as novel targets of cancer therapy across multiple tumour types. ESMO Open 1:e000023

    Article  Google Scholar 

  2. Amin MB, Edge S, Greene F, Byrd DR, Brookland RK, Washington MK, Gershenwald JE, Compton CC, Hess KR, Sullivan DC, Jessup JM, Brierley JD, Gaspar LE, Schilsky RL, Balch CM, Cancer AJCo (2017) AJCC cancer staging manual, 8th edn. Springer International Publishing, Berlin

    Book  Google Scholar 

  3. Bruix J, Qin S, Merle P, Granito A, Huang Y-H, Bodoky G, Pracht M, Yokosuka O, Rosmorduc O, Breder V, Gerolami R, Masi G, Ross PJ, Song T, Bronowicki J-P, Ollivier-Hourmand I, Kudo M, Cheng A-L, Llovet JM, Finn RS, LeBerre M-A, Baumhauer A, Meinhardt G, Han G (2017) Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 389:56–66

    Article  CAS  Google Scholar 

  4. Camp RL, Dolled-Filhart M, Rimm DL (2004) X-tile: a new bio-informatics tool for biomarker assessment and outcome-based cut-point optimization. Clin Cancer Res 10:7252–7259

    Article  CAS  Google Scholar 

  5. Cho YA, Chung JM, Ryu H, Kim EK, Cho BC, Yoon SO (2019) Investigating Trk protein expression between Oropharyngeal and non-oropharyngeal squamous cell carcinoma: clinical implications and possible roles of human papillomavirus infection. Cancer Res Treat 51:1052–1063

    Article  CAS  Google Scholar 

  6. Choi S, Chu J, Kim B, Ha SY, Kim ST, Lee J, Kang WK, Han H, Sohn I, Kim KM (2019) Tumor heterogeneity index to detect human epidermal growth factor receptor 2 amplification by next-generation sequencing: a direct comparison study with immunohistochemistry. J Mol Diagn 21:612–622

    Article  CAS  Google Scholar 

  7. Drilon A, Laetsch TW, Kummar S, DuBois SG, Lassen UN, Demetri GD, Nathenson M, Doebele RC, Farago AF, Pappo AS, Turpin B, Dowlati A, Brose MS, Mascarenhas L, Federman N, Berlin J, El-Deiry WS, Baik C, Deeken J, Boni V, Nagasubramanian R, Taylor M, Rudzinski ER, Meric-Bernstam F, Sohal DPS, Ma PC, Raez LE, Hechtman JF, Benayed R, Ladanyi M, Tuch BB, Ebata K, Cruickshank S, Ku NC, Cox MC, Hawkins DS, Hong DS, Hyman DM (2018) Efficacy of Larotrectinib in TRK fusion-positive cancers in adults and children. N Engl J Med 378:731–739

    Article  CAS  Google Scholar 

  8. Drilon A, Siena S, Ou SI, Patel M, Ahn MJ, Lee J, Bauer TM, Farago AF, Wheler JJ, Liu SV, Doebele R, Giannetta L, Cerea G, Marrapese G, Schirru M, Amatu A, Bencardino K, Palmeri L, Sartore-Bianchi A, Vanzulli A, Cresta S, Damian S, Duca M, Ardini E, Li G, Christiansen J, Kowalski K, Johnson AD, Patel R, Luo D, Chow-Maneval E, Hornby Z, Multani PS, Shaw AT, De Braud FG (2017) Safety and antitumor activity of the multitargeted pan-TRK, ROS1, and ALK inhibitor Entrectinib: combined results from two phase I trials (ALKA-372-001 and STARTRK-1). Cancer Discov 7:400–409

    Article  CAS  Google Scholar 

  9. Edmondson HA, Steiner PE (1954) Primary carcinoma of the liver: a study of 100 cases among 48,900 necropsies. Cancer 7:462–503

    Article  CAS  Google Scholar 

  10. El-Khoueiry AB, Sangro B, Yau T, Crocenzi TS, Kudo M, Hsu C, Kim T-Y, Choo S-P, Trojan J, Welling TH, Meyer T, Kang Y-K, Yeo W, Chopra A, Anderson J, dela Cruz C, Lang L, Neely J, Tang H, Dastani HB, Melero I (2017) Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet 389:2492–2502

    Article  CAS  Google Scholar 

  11. Hechtman JF, Benayed R, Hyman DM, Drilon A, Zehir A, Frosina D, Arcila ME, Dogan S, Klimstra DS, Ladanyi M, Jungbluth AA (2017) Pan-Trk immunohistochemistry is an efficient and reliable screen for the detection of NTRK fusions. Am J Surg Pathol 41:1547–1551

    Article  Google Scholar 

  12. Hyeon J, Ahn S, Park CK (2013) CHD1L is a marker for poor prognosis of hepatocellular carcinoma after surgical resection. Korean Journal of Pathology 47:9–15

    Article  Google Scholar 

  13. Imamura H, Matsuyama Y, Tanaka E, Ohkubo T, Hasegawa K, Miyagawa S, Sugawara Y, Minagawa M, Takayama T, Kawasaki S, Makuuchi M (2003) Risk factors contributing to early and late phase intrahepatic recurrence of hepatocellular carcinoma after hepatectomy. J Hepatol 38:200–207

    Article  Google Scholar 

  14. Kheder ES, Hong DS (2018) Emerging targeted therapy for tumors with NTRK fusion proteins. Clin Cancer Res 24:5807–5814

    Article  CAS  Google Scholar 

  15. Kudo M, Finn RS, Qin S, Han K-H, Ikeda K, Piscaglia F, Baron A, Park J-W, Han G, Jassem J, Blanc JF, Vogel A, Komov D, Evans TRJ, Lopez C, Dutcus C, Guo M, Saito K, Kraljevic S, Tamai T, Ren M, Cheng A-L (2018) Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 non-inferiority trial. Lancet 391:1163–1173

    Article  CAS  Google Scholar 

  16. Kumada T, Nakano S, Takeda I, Sugiyama K, Osada T, Kiriyama S, Sone Y, Toyoda H, Shimada S, Takahashi M, Sassa T (1997) Patterns of recurrence after initial treatment in patients with small hepatocellular carcinoma. Hepatology 25:87–92

    Article  CAS  Google Scholar 

  17. Llovet JM, Bru C, Bruix J (1999) Prognosis of hepatocellular carcinoma: the BCLC staging classification. Semin Liver Dis 19:329–338

    Article  CAS  Google Scholar 

  18. Ma D, Wang Z, Yang L, Mu X, Wang Y, Zhao X, Li J, Lin D (2016) Responses to crizotinib in patients with ALK-positive lung adenocarcinoma who tested immunohistochemistry (IHC)-positive and fluorescence in situ hybridization (FISH)-negative. Oncotarget 7:64410–64420

    Article  Google Scholar 

  19. Okamura R, Boichard A, Kato S, Sicklick JK, Bazhenova L, Kurzrock R (2018) Analysis of NTRK Alterations in Pan-Cancer Adult and Pediatric Malignancies: Implications for NTRK-Targeted Therapeutics. JCO Precis Oncol 2018

  20. Remmele W, Stegner HE (1987) Recommendation for uniform definition of an immunoreactive score (IRS) for immunohistochemical estrogen receptor detection (ER-ICA) in breast cancer tissue. Pathologe 8:138–140

    CAS  Google Scholar 

  21. Rudzinski ER, Lockwood CM, Stohr BA, Vargas SO, Sheridan R, Black JO, Rajaram V, Laetsch TW, Davis JL (2018) Pan-Trk immunohistochemistry identifies NTRK rearrangements in pediatric Mesenchymal tumors. Am J Surg Pathol 42:927–935

    Article  Google Scholar 

  22. Sclabas GM, Fujioka S, Schmidt C, Li Z, Frederick WA, Yang W, Yokoi K, Evans DB, Abbruzzese JL, Hess KR, Zhang W, Fidler IJ, Chiao PJ (2005) Overexpression of tropomysin-related kinase B in metastatic human pancreatic cancer cells. Clin Cancer Res 11:440–449

    CAS  PubMed  Google Scholar 

  23. Shan C, Wei J, Hou R, Wu B, Yang Z, Wang L, Lei D, Yang X (2016) Schwann cells promote EMT and the Schwann-like differentiation of salivary adenoid cystic carcinoma cells via the BDNF/TrkB axis. Oncol Rep 35:427–435

    Article  CAS  Google Scholar 

  24. Sun JM, Choi YL, Won JK, Hirsch FR, Ahn JS, Ahn MJ, Park K (2012) A dramatic response to crizotinib in a non-small-cell lung cancer patient with IHC-positive and FISH-negative ALK. J Thorac Oncol 7:e36–e38

    Article  Google Scholar 

  25. Vaishnavi A, Le AT, Doebele RC (2015) TRKing down an old oncogene in a new era of targeted therapy. Cancer Discov 5:25–34

    Article  CAS  Google Scholar 

  26. Wang K, Lim HY, Shi S, Lee J, Deng S, Xie T, Zhu Z, Wang Y, Pocalyko D, Yang WJ, Rejto PA, Mao M, Park CK, Xu J (2013) Genomic landscape of copy number aberrations enables the identification of oncogenic drivers in hepatocellular carcinoma. Hepatology 58:706–717

    Article  Google Scholar 

  27. Xu CW, Wang WX, Chen YP, Chen Y, Liu W, Zhong LH, Chen FF, Zhuang W, Song ZB, Chen XH, Huang YJ, Guan YF, Yi X, Lv TF, Zhu WF, Lu JP, Wang XJ, Shi Y, Lin XD, Chen G, Song Y (2018) Simultaneous VENTANA IHC and RT-PCR testing of ALK status in Chinese non-small cell lung cancer patients and response to crizotinib. J Transl Med 16:93

    Article  CAS  Google Scholar 

  28. Zhu AX, Finn RS, Edeline J, Cattan S, Ogasawara S, Palmer D, Verslype C, Zagonel V, Fartoux L, Vogel A, Sarker D, Verset G, Chan SL, Knox J, Daniele B, Webber AL, Ebbinghaus SW, Ma J, Siegel AB, Cheng A-L, Kudo M, Alistar A, Asselah J, Blanc J-F, Borbath I, Cannon T, Chung K, Cohn A, Cosgrove DP, Damjanov N, Gupta M, Karino Y, Karwal M, Kaubisch A, Kelley R, Van Laethem J-L, Larson T, Lee J, Li D, Manhas A, Manji GA, Numata K, Parsons B, Paulson AS, Pinto C, Ramirez R, Ratnam S, Rizell M, Rosmorduc O, Sada Y, Sasaki Y, Stal PI, Strasser S, Trojan J, Vaccaro G, Van Vlierberghe H, Weiss A, Weiss K-H, Yamashita T (2018) Pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib (KEYNOTE-224): a non-randomised, open-label phase 2 trial. The Lancet Oncology 19:940–952

    Article  Google Scholar 

Download references

Funding

This study was funded by the Samsung Medical Center intramural Grant (#SMO1161731) and the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education (NRF-2017R1C1B5017890).The authors confirm independence from those.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Yun Ha.

Ethics declarations

Conflict of Interest

All contributing authors have no financial support relevant to this article, and no conflict of interest to declare.

EHTICS Approval and CONSCENT to Participate

The Institutional Review Board of Samsung Medical Center approved this study and waived informed consent for this retrospective study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(XLSX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, S., Park, S., Cho, Y.A. et al. Clinical Significance of Trk Receptor Expression as a New Therapeutic Target in Hepatocellular Carcinoma. Pathol. Oncol. Res. 26, 2587–2595 (2020). https://doi.org/10.1007/s12253-020-00871-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12253-020-00871-7

Keywords

Navigation