Skip to main content

Advertisement

Log in

Entangling Relation of Micro RNA-let7, miRNA-200 and miRNA-125 with Various Cancers

  • Review
  • Published:
Pathology & Oncology Research

An Erratum to this article was published on 29 April 2017

This article has been updated

Abstract

Involvement of micro RNAs (miRNA) is currently the focus for cancer studies as they effect the post transcriptional expression of different genes. Let-7 family is among the firstly discovered miRNAs that play important role in cell proliferation and dysregulation leading to cell based diseases including cancer. Another family, miRNA-200 prevents transformation of cell to malignant form and tumor formation by interacting with epidermal mesenchymal transition (EMT). Similarly miRNA-125 controls apoptosis and proliferation by affecting multiple genes involved in transcription, immunological defense, resistance against viral and bacterial infections that ultimately leads to cell proliferation, metastasis and finally cancer. All of these micro RNAs are known to be either upregulated or downregulated in various cancers. Current review is focused to elaborate the role of these three families of micro RNAs on different genes that ultimately cause cancer. In conclusion we can say that the miRNAs discussed here are mostly downregulated in various cancers with some exceptions when upregulation of miRNA-125 may be attributed to cancer formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Change history

  • 29 April 2017

    An erratum to this article has been published.

References

  1. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5):843–854

    Article  CAS  PubMed  Google Scholar 

  2. Calin GA, Croce CM (2006) MicroRNA signatures in human cancers. Nat Rev Cancer 6(11):857–866. doi:10.1038/nrc1997

    Article  CAS  PubMed  Google Scholar 

  3. Iliopoulos D, Hirsch HA, Struhl K (2009) An epigenetic switch involving NF-kappaB, Lin28, let-7 MicroRNA, and IL6 links inflammation to cell transformation. Cell 139(4):693–706. doi:10.1016/j.cell.2009.10.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lee YS, Dutta A (2007) The tumor suppressor microRNA let-7 represses the HMGA2 oncogene. Genes Dev 21(9):1025–1030. doi:10.1101/gad.1540407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lee H, Han S, Kwon CS, Lee D (2016) Biogenesis and regulation of the let-7 miRNAs and their functional implications. Protein & cell 7(2):100–113. doi:10.1007/s13238-015-0212-y

    Article  CAS  Google Scholar 

  6. Kumar MS, Erkeland SJ, Pester RE, Chen CY, Ebert MS, Sharp PA, Jacks T (2008) Suppression of non-small cell lung tumor development by the let-7 microRNA family. Proc Natl Acad Sci U S A 105(10):3903–3908. doi:10.1073/pnas.0712321105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Brueckner B, Stresemann C, Kuner R, Mund C, Musch T, Meister M, Sultmann H, Lyko F (2007) The human let-7a-3 locus contains an epigenetically regulated microRNA gene with oncogenic function. Cancer Res 67(4):1419–1423. doi:10.1158/0008-5472.CAN-06-4074

    Article  CAS  PubMed  Google Scholar 

  8. Shell S, Park SM, Radjabi AR, Schickel R, Kistner EO, Jewell DA, Feig C, Lengyel E, Peter ME (2007) Let-7 expression defines two differentiation stages of cancer. Proc Natl Acad Sci U S A 104(27):11400–11405. doi:10.1073/pnas.0704372104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Barh D, Malhotra R, Ravi B, Sindhurani P (2010) MicroRNA let-7: an emerging next-generation cancer therapeutic. Curr Oncol 17(1):70–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yu F, Yao H, Zhu P, Zhang X, Pan Q, Gong C, Huang Y, Hu X, Su F, Lieberman J, Song E (2007) Let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 131(6):1109–1123. doi:10.1016/j.cell.2007.10.054

    Article  CAS  PubMed  Google Scholar 

  11. Ariazi EA, Brailoiu E, Yerrum S, Shupp HA, Slifker MJ, Cunliffe HE, Black MA, Donato AL, Arterburn JB, Oprea TI, Prossnitz ER, Dun NJ, Jordan VC (2010) The G protein-coupled receptor GPR30 inhibits proliferation of estrogen receptor-positive breast cancer cells. Cancer Res 70(3):1184–1194. doi:10.1158/0008-5472.CAN-09-3068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Piskounova E, Polytarchou C, Thornton JE, LaPierre RJ, Pothoulakis C, Hagan JP, Iliopoulos D, Gregory RI (2011) Lin28A and Lin28B inhibit let-7 microRNA biogenesis by distinct mechanisms. Cell 147(5):1066–1079. doi:10.1016/j.cell.2011.10.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yun J, Frankenberger CA, Kuo WL, Boelens MC, Eves EM, Cheng N, Liang H, Li WH, Ishwaran H, Minn AJ, Rosner MR (2011) Signalling pathway for RKIP and let-7 regulates and predicts metastatic breast cancer. EMBO J 30(21):4500–4514. doi:10.1038/emboj.2011.312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dangi-Garimella S, Yun J, Eves EM, Newman M, Erkeland SJ, Hammond SM, Minn AJ, Rosner MR (2009) Raf kinase inhibitory protein suppresses a metastasis signalling cascade involving LIN28 and let-7. EMBO J 28(4):347–358. doi:10.1038/emboj.2008.294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Uhlmann S, Zhang JD, Schwager A, Mannsperger H, Riazalhosseini Y, Burmester S, Ward A, Korf U, Wiemann S, Sahin O (2010) miR-200bc/429 cluster targets PLCgamma1 and differentially regulates proliferation and EGF-driven invasion than miR-200a/141 in breast cancer. Oncogene 29(30):4297–4306. doi:10.1038/onc.2010.201

    Article  CAS  PubMed  Google Scholar 

  16. Zhu W, Xu H, Zhu D, Zhi H, Wang T, Wang J, Jiang B, Shu Y, Liu P (2012) miR-200bc/429 cluster modulates multidrug resistance of human cancer cell lines by targeting BCL2 and XIAP. Cancer Chemother Pharmacol 69(3):723–731. doi:10.1007/s00280-011-1752-3

    Article  CAS  PubMed  Google Scholar 

  17. Wang G, Chan ES, Kwan BC, Li PK, Yip SK, Szeto CC, Ng CF (2012) Expression of microRNAs in the urine of patients with bladder cancer. Clinical genitourinary cancer 10(2):106–113. doi:10.1016/j.clgc.2012.01.001

    Article  PubMed  Google Scholar 

  18. Wiklund ED, Bramsen JB, Hulf T, Dyrskjot L, Ramanathan R, Hansen TB, Villadsen SB, Gao S, Ostenfeld MS, Borre M, Peter ME, Orntoft TF, Kjems J, Clark SJ (2011) Coordinated epigenetic repression of the miR-200 family and miR-205 in invasive bladder cancer. Int J Cancer 128(6):1327–1334. doi:10.1002/ijc.25461

    Article  CAS  PubMed  Google Scholar 

  19. Baffa R, Fassan M, Volinia S, O'Hara B, Liu CG, Palazzo JP, Gardiman M, Rugge M, Gomella LG, Croce CM, Rosenberg A (2009) MicroRNA expression profiling of human metastatic cancers identifies cancer gene targets. J Pathol 219(2):214–221. doi:10.1002/path.2586

    Article  CAS  PubMed  Google Scholar 

  20. Kohler CU, Bryk O, Meier S, Lang K, Rozynek P, Bruning T, Kafferlein HU (2013) Analyses in human urothelial cells identify methylation of miR-152, miR-200b and miR-10a genes as candidate bladder cancer biomarkers. Biochem Biophys Res Commun 438(1):48–53. doi:10.1016/j.bbrc.2013.07.021

    Article  CAS  PubMed  Google Scholar 

  21. Radisky DC (2011) miR-200c at the nexus of epithelial-mesenchymal transition, resistance to apoptosis, and the breast cancer stem cell phenotype. Breast cancer research : BCR 13(3):110. doi:10.1186/bcr2885

    Article  PubMed  PubMed Central  Google Scholar 

  22. Teng Y, Mei Y, Hawthorn L, Cowell JK (2014) WASF3 regulates miR-200 inactivation by ZEB1 through suppression of KISS1 leading to increased invasiveness in breast cancer cells. Oncogene 33(2):203–211. doi:10.1038/onc.2012.565

    Article  CAS  PubMed  Google Scholar 

  23. Li X, Roslan S, Johnstone CN, Wright JA, Bracken CP, Anderson M, Bert AG, Selth LA, Anderson RL, Goodall GJ, Gregory PA, Khew-Goodall Y (2014) MiR-200 can repress breast cancer metastasis through ZEB1-independent but moesin-dependent pathways. Oncogene 33(31):4077–4088. doi:10.1038/onc.2013.370

    Article  CAS  PubMed  Google Scholar 

  24. Madhavan D, Zucknick M, Wallwiener M, Cuk K, Modugno C, Scharpff M, Schott S, Heil J, Turchinovich A, Yang R, Benner A, Riethdorf S, Trumpp A, Sohn C, Pantel K, Schneeweiss A, Burwinkel B (2012) Circulating miRNAs as surrogate markers for circulating tumor cells and prognostic markers in metastatic breast cancer. Clinical cancer research : an official journal of the American Association for Cancer Research 18(21):5972–5982. doi:10.1158/1078-0432.CCR-12-1407

    Article  CAS  Google Scholar 

  25. Chen Y, Sun Y, Chen L, Xu X, Zhang X, Wang B, Min L, Liu W (2013) miRNA-200c increases the sensitivity of breast cancer cells to doxorubicin through the suppression of E-cadherin-mediated PTEN/Akt signaling. Mol Med Rep 7(5):1579–1584. doi:10.3892/mmr.2013.1403

    Article  CAS  PubMed  Google Scholar 

  26. Hu X, Schwarz JK, Lewis JS Jr, Huettner PC, Rader JS, Deasy JO, Grigsby PW, Wang X (2010) A microRNA expression signature for cervical cancer prognosis. Cancer Res 70(4):1441–1448. doi:10.1158/0008-5472.CAN-09-3289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pedroza-Torres A, Lopez-Urrutia E, Garcia-Castillo V, Jacobo-Herrera N, Herrera LA, Peralta-Zaragoza O, Lopez-Camarillo C, De Leon DC, Fernandez-Retana J, Cerna-Cortes JF, Perez-Plasencia C (2014) MicroRNAs in cervical cancer: evidences for a miRNA profile deregulated by HPV and its impact on radio-resistance. Molecules 19(5):6263–6281. doi:10.3390/molecules19056263

    Article  PubMed  Google Scholar 

  28. Torres A, Torres K, Pesci A, Ceccaroni M, Paszkowski T, Cassandrini P, Zamboni G, Maciejewski R (2013) Diagnostic and prognostic significance of miRNA signatures in tissues and plasma of endometrioid endometrial carcinoma patients. Int J Cancer 132(7):1633–1645. doi:10.1002/ijc.27840

    Article  CAS  PubMed  Google Scholar 

  29. Diaz-Martin J, Diaz-Lopez A, Moreno-Bueno G, Castilla MA, Rosa-Rosa JM, Cano A, Palacios J (2014) A core microRNA signature associated with inducers of the epithelial-to-mesenchymal transition. J Pathol 232(3):319–329. doi:10.1002/path.4289

    Article  CAS  PubMed  Google Scholar 

  30. Toiyama Y, Hur K, Tanaka K, Inoue Y, Kusunoki M, Boland CR, Goel A (2014) Serum miR-200c is a novel prognostic and metastasis-predictive biomarker in patients with colorectal cancer. Ann Surg 259(4):735–743. doi:10.1097/SLA.0b013e3182a6909d

    Article  PubMed  PubMed Central  Google Scholar 

  31. Tu HF, Lin SC, Chang KW (2013) MicroRNA aberrances in head and neck cancer: pathogenetic and clinical significance. Current opinion in otolaryngology & head and neck surgery 21(2):104–111. doi:10.1097/MOO.0b013e32835e1d6e

    Article  Google Scholar 

  32. Tamagawa S, Beder LB, Hotomi M, Gunduz M, Yata K, Grenman R, Yamanaka N (2014) Role of miR-200c/miR-141 in the regulation of epithelial-mesenchymal transition and migration in head and neck squamous cell carcinoma. Int J Mol Med 33(4):879–886. doi:10.3892/ijmm.2014.1625

    Article  CAS  PubMed  Google Scholar 

  33. Tellez CS, Juri DE, Do K, Bernauer AM, Thomas CL, Damiani LA, Tessema M, Leng S, Belinsky SA (2011) EMT and stem cell-like properties associated with miR-205 and miR-200 epigenetic silencing are early manifestations during carcinogen-induced transformation of human lung epithelial cells. Cancer Res 71(8):3087–3097. doi:10.1158/0008-5472.CAN-10-3035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kundu ST, Byers LA, Peng DH, Roybal JD, Diao L, Wang J, Tong P, Creighton CJ, Gibbons DL (2016) The miR-200 family and the miR-183 ~ 96 ~ 182 cluster target Foxf2 to inhibit invasion and metastasis in lung cancers. Oncogene 35(2):173–186. doi:10.1038/onc.2015.71

    Article  CAS  PubMed  Google Scholar 

  35. Feng B, Wang R, Chen LB (2012) Review of miR-200b and cancer chemosensitivity. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie 66(6):397–402. doi:10.1016/j.biopha.2012.06.002

    Article  CAS  Google Scholar 

  36. Suryawanshi S, Vlad AM, Lin HM, Mantia-Smaldone G, Laskey R, Lee M, Lin Y, Donnellan N, Klein-Patel M, Lee T, Mansuria S, Elishaev E, Budiu R, Edwards RP, Huang X (2013) Plasma microRNAs as novel biomarkers for endometriosis and endometriosis-associated ovarian cancer. Clinical cancer research : an official journal of the American Association for Cancer Research 19(5):1213–1224. doi:10.1158/1078-0432.CCR-12-2726

    Article  CAS  Google Scholar 

  37. Jabbari N, Reavis AN, McDonald JF (2014) Sequence variation among members of the miR-200 microRNA family is correlated with variation in the ability to induce hallmarks of mesenchymal-epithelial transition in ovarian cancer cells. Journal of ovarian research 7:12. doi:10.1186/1757-2215-7-12

    Article  PubMed  PubMed Central  Google Scholar 

  38. Watahiki A, Wang Y, Morris J, Dennis K, O'Dwyer HM, Gleave M, Gout PW, Wang Y (2011) MicroRNAs associated with metastatic prostate cancer. PLoS One 6(9):e24950. doi:10.1371/journal.pone.0024950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chen X, Wang X, Ruan A, Han W, Zhao Y, Lu X, Xiao P, Shi H, Wang R, Chen L, Chen S, Du Q, Yang H, Zhang X (2014) miR-141 is a key regulator of renal cell carcinoma proliferation and metastasis by controlling EphA2 expression. Clinical cancer research : an official journal of the American Association for Cancer Research 20(10):2617–2630. doi:10.1158/1078-0432.CCR-13-3224

    Article  CAS  Google Scholar 

  40. Rodriguez A, Griffiths-Jones S, Ashurst JL, Bradley A (2004) Identification of mammalian microRNA host genes and transcription units. Genome Res 14(10A):1902–1910. doi:10.1101/gr.2722704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jiang L, Huang Q, Chang J, Wang E, Qiu X (2011) MicroRNA HSA-miR-125a-5p induces apoptosis by activating p53 in lung cancer cells. Exp Lung Res 37(7):387–398. doi:10.3109/01902148.2010.492068

    Article  CAS  PubMed  Google Scholar 

  42. Yanokura M, Banno K, Iida M, Irie H, Umene K, Masuda K, Kobayashi Y, Tominaga E, Aoki D (2015) MicroRNAS in endometrial cancer: recent advances and potential clinical applications. EXCLI J 14:190–198. doi:10.17179/excli2014-590

    PubMed  PubMed Central  Google Scholar 

  43. Shang C, Lu YM, Meng LR (2012) MicroRNA-125b down-regulation mediates endometrial cancer invasion by targeting ERBB2. Medical science monitor : international medical journal of experimental and clinical research 18(4):BR149–BR155

    Article  CAS  Google Scholar 

  44. Nishida N, Yokobori T, Mimori K, Sudo T, Tanaka F, Shibata K, Ishii H, Doki Y, Kuwano H, Mori M (2011) MicroRNA miR-125b is a prognostic marker in human colorectal cancer. Int J Oncol 38(5):1437–1443. doi:10.3892/ijo.2011.969

    CAS  PubMed  Google Scholar 

  45. Li W, Duan R, Kooy F, Sherman SL, Zhou W, Jin P (2009) Germline mutation of microRNA-125a is associated with breast cancer. J Med Genet 46(5):358–360. doi:10.1136/jmg.2008.063123

    Article  CAS  PubMed  Google Scholar 

  46. Mitra S, Mukherjee N, Das S, Das P, Panda CK, Chakrabarti J (2014) Anomalous altered expressions of downstream gene-targets in TP53-miRNA pathways in head and neck cancer. Scientific reports 4:6280. doi:10.1038/srep06280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Nakanishi H, Taccioli C, Palatini J, Fernandez-Cymering C, Cui R, Kim T, Volinia S, Croce CM (2014) Loss of miR-125b-1 contributes to head and neck cancer development by dysregulating TACSTD2 and MAPK pathway. Oncogene 33(6):702–712. doi:10.1038/onc.2013.13

    Article  CAS  PubMed  Google Scholar 

  48. Sun YM, Lin KY, Chen YQ (2013) Diverse functions of miR-125 family in different cell contexts. J Hematol Oncol 6:6. doi:10.1186/1756-8722-6-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Amir S, Ma AH, Shi XB, Xue L, Kung HJ, Devere White RW (2013) Oncomir miR-125b suppresses p14(ARF) to modulate p53-dependent and p53-independent apoptosis in prostate cancer. PLoS One 8(4):e61064. doi:10.1371/journal.pone.0061064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Jiang L, Huang Q, Zhang S, Zhang Q, Chang J, Qiu X, Wang E (2010) Hsa-miR-125a-3p and hsa-miR-125a-5p are downregulated in non-small cell lung cancer and have inverse effects on invasion and migration of lung cancer cells. BMC Cancer 10:318. doi:10.1186/1471-2407-10-318

    Article  PubMed  PubMed Central  Google Scholar 

  51. Hsieh TH, Hsu CY, Tsai CF, Long CY, Wu CH, Wu DC, Lee JN, Chang WC, Tsai EM (2015) HDAC inhibitors target HDAC5, upregulate microRNA-125a-5p, and induce apoptosis in breast cancer cells. Molecular therapy : the journal of the American Society of Gene Therapy 23(4):656–666. doi:10.1038/mt.2014.247

    Article  CAS  Google Scholar 

  52. Gonzalez-Vallinas M, Breuhahn K (2016) MicroRNAs are key regulators of hepatocellular carcinoma (HCC) cell dissemination-what we learned from microRNA-494. Hepatobiliary surgery and nutrition 5(4):372–376. doi:10.21037/hbsn.2016.05.07

    Article  PubMed  PubMed Central  Google Scholar 

  53. Guo X, Wu Y, Hartley RS (2009) MicroRNA-125a represses cell growth by targeting HuR in breast cancer. RNA Biol 6(5):575–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wang S, Huang J, Lyu H, Lee CK, Tan J, Wang J, Liu B (2013) Functional cooperation of miR-125a, miR-125b, and miR-205 in entinostat-induced downregulation of erbB2/erbB3 and apoptosis in breast cancer cells. Cell Death Dis 4:e556. doi:10.1038/cddis.2013.79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Huang L, Luo J, Cai Q, Pan Q, Zeng H, Guo Z, Dong W, Huang J, Lin T (2011) MicroRNA-125b suppresses the development of bladder cancer by targeting E2F3. Int J Cancer 128(8):1758–1769. doi:10.1002/ijc.25509

    Article  CAS  PubMed  Google Scholar 

  56. Ichimi T, Enokida H, Okuno Y, Kunimoto R, Chiyomaru T, Kawamoto K, Kawahara K, Toki K, Kawakami K, Nishiyama K, Tsujimoto G, Nakagawa M, Seki N (2009) Identification of novel microRNA targets based on microRNA signatures in bladder cancer. Int J Cancer 125(2):345–352. doi:10.1002/ijc.24390

    Article  CAS  PubMed  Google Scholar 

  57. Banzhaf-Strathmann J, Edbauer D (2014) Good guy or bad guy: the opposing roles of microRNA 125b in cancer. Cell communication and signaling : CCS 12:30. doi:10.1186/1478-811X-12-30

    Article  PubMed Central  Google Scholar 

  58. Wang H (2016) Predicting MicroRNA biomarkers for cancer using phylogenetic tree and microarray analysis. Int J Mol Sci 17(5). doi:10.3390/ijms17050773

  59. Osanto S, Qin Y, Buermans HP, Berkers J, Lerut E, Goeman JJ, van Poppel H (2012) Genome-wide microRNA expression analysis of clear cell renal cell carcinoma by next generation deep sequencing. PLoS One 7(6):e38298. doi:10.1371/journal.pone.0038298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Merritt WM, Lin YG, Han LY, Kamat AA, Spannuth WA, Schmandt R, Urbauer D, Pennacchio LA, Cheng JF, Nick AM, Deavers MT, Mourad-Zeidan A, Wang H, Mueller P, Lenburg ME, Gray JW, Mok S, Birrer MJ, Lopez-Berestein G, Coleman RL, Bar-Eli M, Sood AK (2008) Dicer, Drosha, and outcomes in patients with ovarian cancer. N Engl J Med 359(25):2641–2650. doi:10.1056/NEJMoa0803785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Takebe T, Enomura M, Yoshizawa E, Kimura M, Koike H, Ueno Y, Matsuzaki T, Yamazaki T, Toyohara T, Osafune K, Nakauchi H, Yoshikawa HY, Taniguchi H (2015) Vascularized and complex organ buds from diverse tissues via mesenchymal cell-driven condensation. Cell Stem Cell 16(5):556–565. doi:10.1016/j.stem.2015.03.004

    Article  CAS  PubMed  Google Scholar 

  62. Feng X, Wang Z, Fillmore R, Xi Y (2014) MiR-200, a new star miRNA in human cancer. Cancer Lett 344(2):166–173. doi:10.1016/j.canlet.2013.11.004

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nosheen Masood.

Ethics declarations

Conflict of Interest

None.

Additional information

An erratum to this article is available at https://doi.org/10.1007/s12253-017-0235-1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masood, N., Yasmin, A. Entangling Relation of Micro RNA-let7, miRNA-200 and miRNA-125 with Various Cancers. Pathol. Oncol. Res. 23, 707–715 (2017). https://doi.org/10.1007/s12253-016-0184-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12253-016-0184-0

Keywords

Navigation