Skip to main content

Advertisement

Log in

Circadian Rhythm of Methylated Septin 9, Cell-Free DNA Amount and Tumor Markers in Colorectal Cancer Patients

  • Original Article
  • Published:
Pathology & Oncology Research

Abstract

To determine the level of cell-free DNA (cfDNA), Septin 9 (SEPT9) and tumor markers (CEA, AFP, CA19–9, TPA, CA72–4). Plasma samples were collected four times a day (06:00, 12:00, 18:00, 24:00) from 9 patients with CRC (5 stage I-II, 4 stage III-IV), from one with colorectal adenoma and from one healthy control. CfDNA was isolated, quantified and bisulfite-converted. CfDNA and methylated SEPT9 were determined by RT-PCR. Plasma levels of conventional tumor markers were also measured. The lowest cfDNA concentrations were observed at 24:00 and 18:00 in stage I-III patients. In stage IV samples low cfDNA level (mean 48.2 ng/ml) were observed at several time points (6:00, 12:00, 18:00). The highest cfDNA levels were measured at 6:00 and 12:00 in CRC I-III stages and at 24:00 in stage IV samples (78.65 ng/ml). Higher in-day differences were found in stage II (43–48%) than in stage I samples (22%). Interestingly, the highest SEPT9 methylation level was found at 24:00 in most CRC cases, in contrast to the cfDNA levels. At 24:00, all cancer and adenoma cases were positive for SEPT9 methylation. At other time points (6:00, 12:00, 18:00) only 77.7% of CRC samples showed SEPT9 positivity. Stage I samples were SEPT9 positive only at 24:00. CEA and CA19–9 levels displayed correlation with the amount of cfDNA in case of late stage cases. Daytime activity can influence SEPT9 positivity in cases with low concentration of cfDNA. Thus, it may improve screening sensitivity by collecting samples earlier in the morning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Crowley E, Di Nicolantonio F, Loupakis F, Bardelli A (2013) Liquid biopsy: monitoring cancer-genetics in the blood. Nat Rev Clin Oncol 10:472–484. doi:10.1038/nrclinonc.2013.110

    Article  CAS  PubMed  Google Scholar 

  2. Mandel P, Métais P (1948) Nucleic acids in human blood plasma. C R Acad Sci Paris 15:241–243

    Google Scholar 

  3. Leon SA, Shapiro B, Sklaroff DM, Yaros MJ (1977) Free DNA in the serum of cancer patients and the effect of therapy. Cancer Res 15:646–650

    Google Scholar 

  4. Stroun M, Anker P, Maurice P, Lyautey J, Lederrey C, Beljanski M (1989) Neoplastic characteristics of the DNA found in the plasma of cancer patients. Oncology 15:318–322. doi:10.1159/000226740

    Google Scholar 

  5. Jahr S, Hentze H, Englisch S, Hardt D, Fackelmayer FO, Hesch RD, Knippers R (2001) DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res 15:1659–1665

    Google Scholar 

  6. Brancaccio P, Lippi G, Maffulli N (2010) Biochemical markers of muscular damage. Clin Chem Lab Med 48:757–767. doi:10.1515/CCLM.2010.179

    Article  CAS  PubMed  Google Scholar 

  7. Chevion S, Moran DS, Heled Y, Shani Y, Regev G, Abbou B, Berenshtein E, Stadtman ER, Epstein Y (2003) Plasma antioxidant status and cell injury after severe physical exercise. Proc Natl Acad Sci U S A 100:5119–5123. doi:10.1073/pnas.0831097100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fatouros IG, Destouni A, Margonis K, Jamurtas AZ, Vrettou C, Kouretas D, Mastorakos G, Mitrakou A, Taxildaris K, Kanavakis E, Papassotiriou I (2006) Cell-free plasma DNA as a novel marker of aseptic inflammation severity related to exercise overtraining. Clin Chem 52:1820–1824. doi:10.1373/clinchem.2006.070417

    Article  CAS  PubMed  Google Scholar 

  9. Brinkmann V, Zychlinsky A (2007) Beneficial suicide: why neutrophils die to make NETs. Nat Rev Microbiol 5:577–582. doi:10.1038/nrmicro1710

    Article  CAS  PubMed  Google Scholar 

  10. Tjoa ML, Cindrova-Davies T, Spasic-Boskovic O, Bianchi DW, Burton GJ (2006) Trophoblastic oxidative stress and the release of cell-free feto-placental DNA. Am J Pathol 169:400–404. doi:10.2353/ajpath.2006.060161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Maron JL, Bianchi DW (2007) Prenatal diagnosis using cell-free nucleic acids in maternal body fluids: a decade of progress. Am J Med Genet C Semin Med Genet 145C:5–17. doi:10.1002/ajmg.c.30115

    Article  CAS  PubMed  Google Scholar 

  12. Leung TN, Zhang J, Lau TK, Chan LYS, Lo D (2001) Increased maternal plasma fetal DNA concentrations in women who eventually develop preeclampsia. Clin Chem 47:137–139

    CAS  PubMed  Google Scholar 

  13. Velders M, Treff G, Machus K, Bosnyák E, Steinacker J, Schumann U (2013) Exercise is a potent stimulus for enhancing circulating DNase activity. Clin Biochem 47:471–474. doi:10.1016/j.clinbiochem.2013.12.017

    Article  PubMed  Google Scholar 

  14. Stroun M, Lyautey J, Lederrey C, Olson-Sand A, Anker P (2001) About the possible origin and mechanism of circulating DNA apoptosis and active DNA release. Clin Chim Acta 15:139–142. doi:10.1016/S0009-8981(01)00665-9

    Article  Google Scholar 

  15. Kettner NM, Katchy CA, Fu L (2014) Circadian gene variants in cancer. Ann Med 46:208–220. doi:10.3109/07853890.2014.914808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lee JH, Sancar A (2011) Regulation of apoptosis by the circadian clock through NF-kappa B signaling. Proc Natl Acad Sci U S A 108:12036–12041. doi:10.1073/pnas.1108125108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Haus E, Smolensky MH (1999) Biologic rhythms in the immune sys-tem. Chronobiol Int 16:581–622

    Article  CAS  PubMed  Google Scholar 

  18. Born J, Lange T, Hansen K, Molle M, Fehm HL (1997) Effects of sleep and circadian rhythm on human circulating immune cells. J Immunol 158:4454–4464

    CAS  PubMed  Google Scholar 

  19. Kawate T, Abo T, Hinuma S, Kumagai K (1981) Studies of the bioperio-dicity of the immune response. II. Co-variations of murine T and B cells and a role of corticosteroid. J Immunol 126:1364–1367

    CAS  PubMed  Google Scholar 

  20. Braude S, Beck A (2013) Complete blood counts with differential: more accurate reference ranges based oncircadian leukocyte trafficking. J Clin Pathol 66:909–910. doi:10.1136/jclinpath-2013-201776

    Article  PubMed  Google Scholar 

  21. Vitaterna MH, King DP, Chang AM, Kornhauser JM, Lowrey PL, McDonald JD, Dove WF, Pinto LH, Turek FW, Takahashi JS (1994) Muta-genesis and mapping of a mouse gene, clock, essential for circadian behavior. Science 264:719–725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lee C, Etchegaray JP, Cagampang FR, Loudon AS, Reppert SM (2001) Posttranslational mechanisms regulate the mammalian circadian clock. Cell 107:855–867

    Article  CAS  PubMed  Google Scholar 

  23. Panda S, Antoch MP, Miller BH, Su AI, Schook AB, Straume M, Schultz PG, Kay SA, Takahashi JS, Hogenesch JB (2002) Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 109:307–320. doi:10.1016/S0092-8674(02)00722-5

    Article  CAS  PubMed  Google Scholar 

  24. Wood PA, Du-Quiton J, You S, Hrushesky WJ (2006) Circadian clock coordinates cancer cell cycle progression, thymidylate synthase, and 5-fluorouracil therapeutic index. Mol Cancer Ther 5:2023–2033. doi:10.1158/1535-7163.MCT-06-0177

    Article  CAS  PubMed  Google Scholar 

  25. Filipski E, King VM, Li X, Granda TG, Mormont MC, Liu X, Claustrat B, Hastings MH, Lévi F (2002) Host circadian clock as a control point in tumor progression. J Natl Cancer Inst 94:690–697. doi:10.1093/jnci/94.9.690

    Article  PubMed  Google Scholar 

  26. Schernhammer ES, Laden F, Speizer FE, Willett WC, Hunter DJ, Kawachi I, Colditz GA (2001) Rotating night shifts and risk of breast cancer in women participating in the nurses’ health study. J Natl Cancer Inst 93:1563–1568. doi:10.1093/jnci/93.20.1563

    Article  CAS  PubMed  Google Scholar 

  27. Cash E, Sephton SE, Chagpar AB, Spiegel D, Rebholz WN, Zimmaro LA, Tillie JM, Dhabhar FS (2015) Circadian disruption and biomarkers of tumor progression in breast cancer patients awaiting surgery. Brain Behav Immun 48:102–114. doi:10.1016/j.bbi.2015.02.017

    Article  CAS  PubMed  Google Scholar 

  28. Focan C, Focan-Henrard D, Collette J, Mechkouri M, Levi F, Hrushesky W, Touitou Y, Franchimont P (1986) Cancer-associated alteration of circadian rhythms in carcinoembryonic antigen (CEA) and alpha-fetoprotein (AFP) in humans. Anticancer Res 6:1137–1144

    CAS  PubMed  Google Scholar 

  29. Frederiksen CB, Lomholt AF, Lottenburger T, Davis GJ, Dowell BL, Blankenstein MA, Christensen IJ, Brunner N, Nielsen HJ (2008) Assessment of the biological variation of plasma tissue inhibitor of metalloproteinases-1. Int J Biol Markers 23:42–47

    Article  CAS  PubMed  Google Scholar 

  30. Grützmann R, Molnar B, Pilarsky C, Habermann JK, Schlag PM, Saeger HD, Miehlke S, Stolz T, Model F, Roblick UJ, Bruch HP, Koch R, Liebenberg V, Devos T, Song X, Day RH, Sledziewski AZ, Lofton-Day C (2008) Sensitive detection of colorectal cancer in peripheral blood by septin 9 DNA methylation assay. PLoS One 3:e3759. doi:10.1371/journal.pone.0003759

    Article  PubMed  PubMed Central  Google Scholar 

  31. deVos T, Tetzner R, Model F, Weiss G, Schuster M, Distler J, Steiger KV, Grützmann R, Pilarsky C, Habermann JK, Fleshner PR, Oubre BM, Day R, Sledziewski AZ, Lofton-Day C (2009) Circulating methylated SEPT9 DNA in plasma is a biomarker for colorectal cancer. Clin Chem 55:1337–1346. doi:10.1373/clinchem.2008.115808

    Article  CAS  PubMed  Google Scholar 

  32. Tänzer M, Balluff B, Distler J, Hale K, Leodolter A, Röcken C, Molnar B, Schmid R, Lofton-Day C, Schuster T, Ebert MP (2010) Performance of epigenetic markers SEPT9 and ALX4 in plasma for detection of colorectal precancerous lesions. PLoS One 5:e9061. doi:10.1371/journal.pone.0009061

    Article  PubMed  PubMed Central  Google Scholar 

  33. Johnson DA, Barclay RL, Mergener K, Weiss G, König T, Beck J, Potter NT (2014) Plasma Septin9 versus fecal immunochemical testing for colorectal cancer screening: a prospective multicenter study. PLoS One 9:e98238. doi:10.1371/journal.pone.0098238

    Article  PubMed  PubMed Central  Google Scholar 

  34. Potter NT, Hurban P, White MN, Whitlock KD, Lofton-Day CE, Tetzner R, Koenig T, Quigley NB, Weiss G (2014) Validation of a real-time PCR-based qualitative assay for the detection of methylated SEPT9 DNA in human plasma. Clin Chem 60:1183–1191. doi:10.1373/clinchem.2013.221044

    Article  CAS  PubMed  Google Scholar 

  35. Jin P, Kang Q, Wang X, Yang L, Yu Y, Li N, He YQ, Han X, Hang J, Zhang J, Song L, Han Y, Sheng JQ (2014) Performance of a second generation methylated SEPT9 test in detecting colorectal neoplasm. J Gastroenterol Hepatol 30:830–833. doi:10.1111/jgh.12855

    Article  Google Scholar 

  36. Tóth K, Sipos F, Kalmár A, Patai AV, Wichmann B, Stoehr R, Golcher H, Schellerer V, Tulassay Z, Molnár B (2012) Detection of methylated SEPT9 in plasma is a reliable screening method for both left- and right-sided colon cancers. PLoS One 7:e46000. doi:10.1371/journal.pone.0046000

    Article  PubMed  PubMed Central  Google Scholar 

  37. Church TR, Wandell M, Lofton-Day C, Mongin SJ, Burger M, Payne SR, Castaños-Vélez E, Blumenstein BA, Rösch T, Osborn N, Snover D, Day RW, Ransohoff DF, PRESEPT Clinical Study Steering Committee, Investigators and Study Team (2014) Prospective evaluation of methylated SEPT9 in plasma for detection of asymptomatic colorectal cancer. Gut 63:317–325. doi:10.1136/gutjnl-2012-304149

    Article  CAS  PubMed  Google Scholar 

  38. Tóth K, Wasserkort R, Sipos F, Kalmár A, Wichmann B, Leiszter K, Valcz G, Juhász M, Miheller P, Patai ÁV, Tulassay Z, Molnár B (2014) Detection of methylated septin 9 in tissue and plasma of colorectal patients with neoplasia and the relationship to the amount of circulating cell-free DNA. PLoS One 9:e115415. doi:10.1371/journal.pone.0115415

    Article  PubMed  PubMed Central  Google Scholar 

  39. Velders M, Treff G, Machus K, Bosnyák E, Steinacker J, Schumann U (2014) Exercise is a potent stimulus for enhancing circulating DNase activity. Clin Biochem 47:471–474. doi:10.1016/j.clinbiochem.2013.12.017

    Article  CAS  PubMed  Google Scholar 

  40. Karantanos T, Theodoropoulos G, Pektasides D, Gazouli M (2014) Clock genes: their role in colorectal cancer. World J Gastroenterol 20:1986–1992. doi:10.3748/wjg.v20.i8.1986

    Article  PubMed  PubMed Central  Google Scholar 

  41. Mazzoccoli G, Panza A, Valvano MR, Palumbo O, Carella M, Pazienza V, Biscaglia G, Tavano F, Di Sebastiano P, Andriulli A, Piepoli A (2011) Clock gene expression levels and relationship with clinical and pathological features in colorectal cancer patients. Chronobiol Int 28:841–851. doi:10.3109/07420528.2011.615182

    Article  CAS  PubMed  Google Scholar 

  42. Warren JD, Xiong W, Bunker AM, Vaughn CP, Furtado LV, Roberts WL, Fang JC, Samowitz WS, Heichman KA (2011) Septin 9 methylated DNA is a sensitive and specific blood test for colorectal cancer. BMC Med 9:133. doi:10.1186/1741-7015-9-133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ali T, Choe J, Awab A, Wagener TL, Orr WC (2013) Sleep, immunity and inflammation in gastrointestinal disorders. World J Gastroenterol 19:9231–9239. doi:10.3748/wjg.v19.i48.9231

    Article  PubMed  PubMed Central  Google Scholar 

  44. Zubelewicz-Szkodzinska B, Muc-Wierzgon M, Wierzgon J, Brodziak A (2001) Dynamics of circadian fluctuations in serum concentration of cortisol and TNF-alpha soluble receptors in gastrointestinal cancer patients. Oncol Rep 8:207–212. doi:10.3892/or.8.1.207

    CAS  PubMed  Google Scholar 

  45. Rich T, Innominato PF, Boerner J, Mormont MC, Iacobelli S, Baron B, Jasmin C, Lévi F (2005) Elevated serum cytokines correlated with altered behavior, serum cortisol rhythm, and dampened 24-hour rest-activity patterns in patients with metastatic colorectal cancer. Clin Cancer Res 11:1757–1764. doi:10.1158/1078-0432.CCR-04-2000

    Article  CAS  PubMed  Google Scholar 

  46. Halberg F, Haus E, Lakatua DJ, Antinozzi R, Cornélissen G (1995) Cancer marker assessment: case report on salivary and urinary CEA. In Vivo 9:311–314

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank both the Endoscopy Unit of the 2nd Department of Internal Medicine, Semmelweis University, and the nurses at the 2nd Department of Internal Medicine for their technical assistance. We also thank Bernadett Tóth for blood sample and data collection and plasma preparation. We thank Prof. Barna Vásárhelyi, Tünde Holczer and all the colleagues at the Department of Laboratory Medicine for the technical assistance. Finally, we thank all of the included patients for the blood collection.

The authors thank Theo deVos the help, scientific comments and support our review paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kinga Tóth.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tóth, K., Patai, Á.V., Kalmár, A. et al. Circadian Rhythm of Methylated Septin 9, Cell-Free DNA Amount and Tumor Markers in Colorectal Cancer Patients. Pathol. Oncol. Res. 23, 699–706 (2017). https://doi.org/10.1007/s12253-016-0174-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12253-016-0174-2

Keywords

Navigation