Skip to main content
Log in

Elevated STMN1 Expression Correlates with Poor Prognosis in Patients with Pancreatic Ductal Adenocarcinoma

  • Research
  • Published:
Pathology & Oncology Research

Abstract

STMN1 is a cytosolic phosphoprotein that not only participates in cell division, but also plays an important role in other microtubule-dependent processes, such as cell motility. Furthermore, STMN1 acts as a “relay protein” in several intracellular signaling pathways that influence cell growth and differentiation. Thus, STMN1 is likely to support cellular processes essential for tumor progression: survival and migration. Indeed, elevated STMN1 expression has been reported in various types of human malignancies and is correlated with poor prognosis in these human malignancies. However, the clinical and prognostic significance of STMN1 in pancreatic ductal adenocarcinoma (PDAC) remains unknown. Thus, we assessed STMN1 in PDAC in this retrospective study. We first examined STMN1 expression in PDAC tissues from 27 cases and matched adjacent non-cancerous tissues by quantitative polymerase chain reaction (PCR) and western blot analyses. Next, immunohistochemistry was used to evaluate STMN1 expression in 87 archived paraffin-embedded PDAC specimens. STMN1 mRNA and protein expression levels were to a large extent up-regulated in PDAC tissue compared with their adjacent non-cancerous tissues. Moreover, STMN1 expression was closely correlated with histological differentiation, lymphatic metastasis, and TNM stage (P = 0.023, 0.047, and 0.014, respectively). In addition, PDAC patients with higher STMN1 expression died sooner than those with lower STMN1 expression (P < 0.01). Multivariate analysis demonstrated that STMN1 expression was an independent prognostic factor for PDAC patients (P < 0.01). Herein, we provide the first evidence that up-regulated STMN1 may contribute to tumor progression and poor prognosis in PDAC patients and may serve as a novel prognostic marker.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM (2010) Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 127:2893–2917

    Article  CAS  PubMed  Google Scholar 

  2. Malik NK, Malik NK, May KS, Chandrasekhar R, Wee W, Flaherty L, Iyer R, Gibbs J, Kuvshinoff B, Wilding G, Warren G, Yang GY (2012) Treatment of locally advanced unresectable pancreatic cancer: a 10-year experience. J Gastrointest Oncol 3:326–334

    PubMed Central  PubMed  Google Scholar 

  3. Kaur S, Baine MJ, Jain M, Sasson AR, Batra SK (2012) Early diagnosis of pancreatic cancer: challenges and new developments. Biomark Med 6:597–612

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. McCleary-Wheeler AL, Lomberk GA, Weiss FU, Schneider G, Fabbri M, Poshusta TL, Dusetti NJ, Baumgart S, Iovanna JL, Ellenrieder V, Urrutia R, Fernandez-Zapico ME (2012) Insights into the epigenetic mechanisms controlling pancreatic carcinogenesis. Cancer Lett 328:212–221

    Article  PubMed Central  PubMed  Google Scholar 

  5. Sun C, Ansari D, Andersson R, Wu DQ (2012) Does gemcitabine-based combination therapy improve the prognosis of unresectable pancreatic cancer? World J Gastroenterol 18:4944–4958

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Howell B, Larsson N, Gullberg M, Cassimeris L (1999) Dissociation of the tubulin-sequestering and microtubule catastrophe-promoting activities of oncoprotein 18/stathmin. Mol Biol Cell 10:105–118

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Belmont LD, Mitchison TJ (1999) Identification of a protein that interacts with tubulin dimers and increases the catastrophe rate of microtubules. Cell 84:623–631

    Article  Google Scholar 

  8. Iancu-Rubin C, Nasrallah CA, Atweh GF (2005) Stathmin prevents the transition from a normal to an endomitotic cell cycle during megakaryocytic differentiation. Cell Cycle 4:1774–1782

    Article  CAS  PubMed  Google Scholar 

  9. Sobel A (1991) Stathmin: a relay phosphoprotein for multiple signal transduction? Trends Biochem Sci 16:301–305

    Article  CAS  PubMed  Google Scholar 

  10. Saal LH, Johansson P, Holm K, Gruvberger-Saal SK, She QB, Maurer M, Koujak S, Ferrando AA, Malmström P, Memeo L, Isola J, Bendahl PO, Rosen N, Hibshoosh H, Ringnér M, Borg A, Parsons R (2007) Poor prognosis in carcinoma is associated with a gene expression signature of aberrant PTEN tumor suppressor pathway activity. Proc Natl Acad Sci U S A 104:7564–7569

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Chung MK, Kim HJ, Lee YS, Han ME, Yoon S, Baek SY, Kim BS, Kim JB, Oh SO (2010) Hedgehog signaling regulates proliferation of prostate cancer cells via stathmin1. Clin Exp Med 10:51–57

    Article  CAS  PubMed  Google Scholar 

  12. Karst AM, Levanon K, Duraisamy S, Liu JF, Hirsch MS, Hecht JL, Drapkin R (2011) Stathmin 1, a marker of PI3K pathway activation and regulator of microtubule dynamics, is expressed in early pelvic serous carcinomas. Gynecol Oncol 123:5–12

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Bieche I, Lachkar S, Becette V, Cifuentes-Diaz C, Sobel A, Lidereau R, Crumi PA (1998) Overexpression of the stathmin gene in a subset of human breast cancer. Br J Cancer 78:701–709

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Singer S, Ehemann V, Brauckhoff A, Keith M, Vreden S, Schirmacher P, Breuhahn K (2007) Protumorigenic overexpression of stathmin/Op18 by gain-of-function mutation in p53 in human hepatocarcinogenesis. Hepatology 46:759–768

    Article  CAS  PubMed  Google Scholar 

  15. Kouzu Y, Uzawa K, Koike H, Saito K, Nakashima D, Higo M, Endo Y, Kasamatsu A, Shiiba M, Bukawa H, Yokoe H, Tanzawa H (2006) Overexpression of stathmin in oral squamous-cell carcinoma: correlation with tumour progression and poor prognosis. Br J Cancer 94:717–723

    PubMed Central  CAS  PubMed  Google Scholar 

  16. Yuan RH, Jeng YM, Chen HL, Lai PL, Pan HW, Hsieh FJ, Lin CY, Lee PH, Hsu HC (2006) Stathmin overexpression cooperates with p53 mutation and osteopontin overexpression, and is associated with tumour progression, early recurrence, and poor prognosis in hepatocellular carcinoma. J Pathol 209:549–558

    Article  CAS  PubMed  Google Scholar 

  17. Jeon TY, Han ME, Lee YW, Kim GH, Song GA, Hur GY, Kim JY, Kim HJ, Yoon S, Baek SY, Kim BS, Kim JB, Oh SO (2010) Overexpression of stathmin1 in the diffuse type of gastric cancer and its roles in proliferation and migration of gastric cancer cells. Br J Cancer 102:710–718

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Chen G, Wang H, Gharib TG, Huang CC, Thomas DG, Shedden KA, Kuick R, Taylor JM, Kardia SL, Misek DE, Giordano TJ, Iannettoni MD, Orringer MB, Hanash SM, Beer DG (2003) Overexpression of oncoprotein 18 correlates with poor differentiation in lung adenocarcinomas. Mol Cell Proteomics 2:107–116

    Article  CAS  PubMed  Google Scholar 

  19. Ghosh R, Gu G, Tillman E, Yuan J, Wang Y, Fazli L, Rennie PS, Kasper S (2007) Increased expression and differential phosphorylation of stathmin may promote prostate cancer progression. Prostate 67:1038–1052

    Article  CAS  PubMed  Google Scholar 

  20. Gan L, Guo K, Li Y, Kang X, Sun L, Shu H, Liu Y (2010) Up-regulated expression of stathmin may be associated with hepatocarcinogenesis. Oncol Rep 23:1037–1043

    CAS  PubMed  Google Scholar 

  21. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Method 25:402–408

    Article  CAS  Google Scholar 

  22. Chen HT, Cai QC, Zheng JM, Man XH, Jiang H, Song B, Jin G, Zhu W, Li ZS (2012) High expression of delta-like ligand 4 predicts poor prognosis after curative resection for pancreatic cancer. Ann Surg Oncol 19(Suppl 3):S464–S474

    Article  PubMed  Google Scholar 

  23. de Jong MC, Li F, Cameron JL, Wolfqang CL, Edil BH, Herman JM, Choti MA, Eckhauser F, Hirose K, Schulick RD, Pawlik TM (2011) Re-evaluating the impact of tumor size on survival following pancreaticoduodenectomy for pancreatic adenocarcinoma. J Surg Oncol 103:656–662

    Article  PubMed  Google Scholar 

  24. Ueda M, Endo I, Nakashima M, Minami Y, Takeda K, Naqano Y, Tanaka K, Ichikawa Y, Toqo S, Kunisaki C, Shimada H (2009) Prognostic factors after resection of pancreatic cancer. World J Surg 33:104–110

    Article  PubMed  Google Scholar 

  25. Gleason MX, Mdzinarishvili T, Are C, Sasson A, Sherman A, Shats O, Sherman S (2013) Prognostic estimator of survival for patients with localized and extended pancreatic ductal adenocarcinoma. Cancer Informat 12:103–114

    Google Scholar 

  26. Perini MV, Montaqnini AL, Jukemura J, Penteado S, Adbo EE, Patzina R, Cecconello I, Cunha JE (2008) Clinical and pathologic prognostic factors for curative resection for pancreatic cancer. HPB (Oxford) 10:356–362

    Article  CAS  Google Scholar 

  27. Sobel A, Tashjian AH Jr (1983) Distinct patterns of cytoplasmic protein phosphorylation related to regulation of synthesis and release of prolactin by GH cells. J Biol Chem 258:10312–10324

    CAS  PubMed  Google Scholar 

  28. Mistry SJ, Atweh GF (2001) Stathmin inhibition enhances okadaic acid-induced mitotic arrest: a potential role for stathmin in mitotic exit. J Biol Chem 276:31209–31215

    Article  CAS  PubMed  Google Scholar 

  29. Mistry SJ, Atweh GF (2006) Therapeutic interactions between stathmin inhibition and chemotherapeutic agents in prostate cancer. Mol Cancer Ther 5:3248–3257

    Article  CAS  PubMed  Google Scholar 

  30. Curmi PA, Noques C, Lachkar S, Carelle N, Gonthier MP, Sobel A, Lidereau R, Bièche I (2000) Overexpression of stathmin in breast carcinomas points out to highly proliferative tumours. Br J Cancer 82:142–150

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Zheng P, Liu YX, Chen L, Liu XH, Xiao ZQ, Zhao L, Li GQ, Zhou J, Ding YQ, Li JM (2010) Stathmin, a new target of PRL-3 identified by proteomic methods, plays a key role in progression and metastasis of colorectal cancer. J Proteome Res 9:4897–4905

    Article  CAS  PubMed  Google Scholar 

  32. Tan HT, Wu W, Nq YZ, Zhang X, Yan B, Ong CW, Tan S, Salto-Tellez M, Hooi SC, Chung MC (2012) Proteomic analysis of colorectal cancer metastasis: stathmin-1 revealed as a player in cancer cell migration and prognostic marker. J Proteome Res 11:1433–1445

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Fundamental Research Funds for the Central Universities of Central South Universityand and grant 81372464 from the National Natural Science Foundation of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weijia Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Hu, G., Kong, F. et al. Elevated STMN1 Expression Correlates with Poor Prognosis in Patients with Pancreatic Ductal Adenocarcinoma. Pathol. Oncol. Res. 21, 1013–1020 (2015). https://doi.org/10.1007/s12253-015-9930-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12253-015-9930-y

Keywords

Navigation