Skip to main content

Advertisement

Log in

Molecular and Clinicopathological Aspects of Prostate Cancer in Bulgarian Probands

  • Research
  • Published:
Pathology & Oncology Research

Abstract

To correlate the molecular data to the clinicopathological parameters in Bulgarian prostate cancer patients. PCA3 overexpression, TMPRSS2-ERG gene fusion, GSTP1 promoter hypermethylation, somatic mutations in the AR gene and the IVS1-27G > A polymorphism in the KLF6 gene were studied. A total of 148 patients were analyzed: 16 aggressive PCa, 83 non-aggressive PCa, 25 BPH and 24 chronic inflammatory diseases. Real-time RT-PCR, DNA sequencing, and bisulfite conversion of DNA, were applied. All cases with aggressive PCa before treatment were tested positive for PCA3 overexpression, expression of a T2-ERG gene fusion product and GSTP1 promoter hypermethylation. No somatic mutations were detected in the AR gene and all patients showed normal KLF6-IVS1-27G > A genotype. The TMPRSS2-ERG positive status correlates with moderate to poorly differentiated prostate tumors and it is considered as unfavorable disease predictor. Positive GSTP1 promoter hypermethylation seems to be highly specific and the earliest epigenetic change in the prostate gland, which indicates the beginning of the pathological process. The appearance of positive molecular markers in blood was considered as a predictor of PCa dissemination. GSTP1 promoter hypermethylation was found as the earliest and a long-lasting epigenetic marker in blood samples of PCa patients, which makes it suitable as a marker for treatment follow-up. The molecular profile of prostate cancer needs to be strictly monitored during the course of disease treatment, which is of a great help in determining the patient’s individual therapy response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ADT:

Androgen deprivation therapy

BPH:

Benign prostatic hyperplasia

CNS:

Central nervous system

CRPC:

Castration-resistant prostate cancer

DNA:

Deoxyribonucleic acid

DRE:

Digital rectal examination

GS:

Gleason score

GWAS:

Genome wide association studies

mRNA:

Messenger Ribonucleic Acid

PCa:

Prostate cancer

PCR:

Polymerase Chain Reaction

PIA:

Proliferative inflammatory atrophy

PIN:

Prostatic intraepithelial neoplasia

PSA:

Prostate-Specific Antigen

qPCR:

Quantitative Polymerase Chain Reaction

RNA:

Ribonucleic Acid

SNP:

Single nucleotide polymorphism

TNM:

Tumor Node Metastasis

TURP:

Transurethral Resection of the Prostate

References

  1. Salagierski M, Schalken JA (2010) PCA3 and TMPRSS2-ERG: promising biomarkers in prostate cancer diagnosis. Cancers 2(3):1432–1440. doi:10.3390/cancers2031432

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Heidenreich A, Aus G, Bolla M, Joniau S, Matveev VB, Schmid HP et al (2008) EAU guidelines on prostate cancer. Eur Urol 53(1):68–80

    Article  PubMed  Google Scholar 

  3. de Kok JB, Verhaegh GW, Roelofs RW, Hessels D, Kiemeney LA, Aalders TW et al (2002) DD3PCA3, a very sensitive and specific marker to detect prostate tumors. Cancer Res 62(9):2695–8

    PubMed  Google Scholar 

  4. Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, Sun XW et al (2005) Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 310(5748):644–8

    Article  CAS  PubMed  Google Scholar 

  5. Gonzalgo ML, Pavlovich CP, Lee SM, Nelson WG (2003) Prostate cancer detection by GSTP1 methylation analysis of postbiopsy urine specimens. Clin Cancer Res 9(7):2673–7

    CAS  PubMed  Google Scholar 

  6. Thomas G, Jacobs KB, Yeager M, Kraft P, Wacholder S, Orr N et al (2008) Multiple loci identified in a genome-wide association study of prostate cancer. Nat Genet 40:310–315. doi:10.1038/ng.91

    Article  CAS  PubMed  Google Scholar 

  7. Eeles RA, Kote-Jarai Z, Giles GG, Olama AA, Guy M, Jugurnauth SK et al (2008) Multiple newly identified loci associated with prostate cancer susceptibility. Nat Genet 40(3):316–21. doi:10.1038/ng.90

    Article  CAS  PubMed  Google Scholar 

  8. Mitelman F, Johansson B, Mertens F (2007) The impact of translocations and gene fusions on cancer causation. Nat Rev Cancer 7(4):233–45

    Article  CAS  PubMed  Google Scholar 

  9. Morris DS, Tomlins SA, Montie JE, Chinnaiyan AM (2008) The discovery and application of gene fusions in prostate cancer. BJU Int 102(3):276–82

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Barry M, Perner S, Demichelis F, Rubin A (2007) TMPRSS2-ERG fusion heterogeneity in multifocal prostate cancer: clinical and biologic implications. Urology 70(4):630–3

    Article  PubMed Central  PubMed  Google Scholar 

  11. Demichelis F, Fall K, Perner S, Andren O, Schmidt F, Setlur SR et al (2007) TMPRSS2:ERG gene fusion associated with lethal prostate cancer in a watchful waiting cohort. Oncogene 26(31):4596–9

    Article  CAS  PubMed  Google Scholar 

  12. Clark JP, Munson KW, Gu JW, Lamparska-Kupsik K, Chan KG, Yoshida JS et al (2008) Performance of a single assay for both type III and type VI TMPRSS2:ERG fusions in noninvasive prediction of prostate biopsy outcome. Clin Chem 54(12):2007–17

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Wang J, Cai Y, Ren C, Ittmann M (2006) Expression of variant TMPRSS2/ERG fusion messenger RNAs is associated with aggressive prostate cancer. Cancer Res 66(17):8347–51

    Article  CAS  PubMed  Google Scholar 

  14. Hessels D, Smit FP, Verhaegh GW, Witjes JA, Cornel EB, Schalken JA (2007) Detection of TMPRSS2-ERG fusion transcripts and prostate cancer antigen 3 in urinary sediments may improve diagnosis of prostate cancer. Clin Cancer Res 13(17):5103–8

    Article  CAS  PubMed  Google Scholar 

  15. Kirby RS, Christmas TJ, Brawer MK (2001) Prostate Cancer. London

  16. Schröder FH (2005) Detection of prostate cancer: the impact of the European Randomized Study of Screening for Prostate Cancer (ERSPC). Can J Urol 1:2–6, 92–3

    Google Scholar 

  17. Yoshimoto M, Joshua AM, Cunha IW, Coudry RA, Fonseca FP, Ludkovski O et al (2008) Absence of TMPRSS2:ERG fusions and PTEN losses in prostate cancer is associated with a favorable outcome. Mod Pathol 21(12):1451–60

    Article  CAS  PubMed  Google Scholar 

  18. Shen MM, Abate-Shen C (2010) Molecular genetics of prostate cancer: new prospects for old challenges genes. Genes Dev 24(18):1967–2000

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Tomlins SA, Laxman B, Dhanasekaran SM, Helgeson BE, Cao X, Morris DS et al (2007) Distinct classes of chromosomal rearrangements create oncogenic ETS gene fusions in prostate cancer. Nature 448(7153):595–9

    Article  CAS  PubMed  Google Scholar 

  20. Rajput AB, Miller MA, De Luca A, Boyd N, Leung S, Hurtado-Coll A et al (2007) Frequency of the TMPRSS2:ERG gene fusion is increased in moderate to poorly differentiated prostate cancers. J Clin Pathol 60(11):1238–1243

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Eisermann K, Wang D, Jing Y, Pascal LE, Wang Z (2013) Androgen receptor gene mutation, rearrangement, polymorphism. Transl Androl Urol 2(3):137–147

    PubMed Central  PubMed  Google Scholar 

  22. Narla G, Difeo A, Reeves HL, Schaid DJ, Hirshfeld J, Hod E et al (2005) A germline DNA polymorphism enhances alternative splicing of the KLF6 tumor suppressor gene and is associated with increased prostate cancer risk. Cancer Res 65(4):1213–22

    Article  CAS  PubMed  Google Scholar 

  23. Narla G, DiFeo A, Fernandez Y, Dhanasekaran S, Huang F, Sangodkar J et al (2008) KLF6-SV1 overexpression accelerates human and mouse prostate cancer progression and metastasis. Clin Invest 118(8):2711–21

    Article  CAS  Google Scholar 

  24. Bussemakers MJ, van Bokhoven A, Verhaegh GW et al (1999) DD3: a new prostate-specific gene, highly overexpressed in prostate cancer. Cancer Res 59(23):5975–9

    CAS  PubMed  Google Scholar 

  25. Brooks JD, Weinstein M, Lin X, Sun Y, Pin SS, Bova GS et al (1998) CG island methylation changes near the GSTP1 gene in prostatic intraepithelial neoplasia. Cancer Epidemiol Biomarkers Prev 7(6):531–6

    CAS  PubMed  Google Scholar 

  26. Nakayama M, Bennett CJ, Hicks JL, Epstein JI, Platz EA, Nelson WG et al (2003) Hypermethylation of the human glutathione S-transferase-gene (GSTP1) CpG island is present in a subset of proliferative inflammatory atrophy lesions but not in normal or hyperplastic epithelium of the prostate: a detailed studyusing laser-capture microdissection. Am J Pathol 163(3):923–933

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the grants №4-D/2011 and 26-D/2012, and 17-D/2013 Medical University Sofia, Bulgaria.

Conflict of Interest

The authors report no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anita Tsvetkova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsvetkova, A., Todorova, A., Todorov, T. et al. Molecular and Clinicopathological Aspects of Prostate Cancer in Bulgarian Probands. Pathol. Oncol. Res. 21, 969–976 (2015). https://doi.org/10.1007/s12253-015-9915-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12253-015-9915-x

Keywords

Navigation